

THE UNIVERSITY OF BUCKINGHAM

An ENAS Based Approach for Constructing Deep Learning Models for Breast Cancer Recognition from Ultrasound Images

Mohammed Ahmed, Hongbo Du, Alaa AlZoubi

School of Computing, University of Buckingham, UK [1200526, Hongbo.du, alaa.alzoubi200526, Hongbo.du, alaa.alzoubi

Introduction

Background

- Widespread use of handcrafted CNN architectures (AlexNet, VGGNet, GoogLeNet, ResNet ...etc.)
- CNN architectures: hard to design
- Recent Development: automatic architecture search
 - Neural Architecture Search (NAS)
 - Efficient Neural Architecture Search (ENAS)

Aim of the Study

To Investigate effectiveness of ENAS for breast cancer recognition from US images

Methods

Hyperparameter setting for Searching:

- Batch size = 8
- Image size = 100×100
- Other hyperparameter settings: the default values of ENAS

Hyperparameter setting for final CNN Model:

- Batch size = 8
- No. of epochs =100
- Image size = 100×100
- Other hyperparameter settings: the default values of ENAS

Layers in final architectures:

- **ENAS 17** (5*N, R, 5*N, R, 5*N)
- **ENAS 7** (N, R, N, R, 3*N)

Optimal cells(Norman and Reduction) generated by ENAS for Breast Cancer classification

Data and Results

Dataset

- Ultrasound images for breast lesions (262 Benign and 262 Malignant images)
- Different US machine makes

Data Preparation

- Manual cropping of Rol by radiologist
- Training data augmentation:
 - Geometric Methods: Rotation (90,180 and 270), and Mirroring
 - Singular Value Decomposition (SVD) (25, 35 and 45)
- Bicubic Resizing (100×100)

Examples of ultrasound images with labeled region of interest

ENAS Models Performance and Comparison with Models of Other Architectures

Models	TNR	TPR	PR	Accuracy	#Parameters
ENAS 17	86.7%	92.0%	87.5%	89.3%	4,251,780
ENAS 7	90.9%	86.7%	91.0%	88.8%	2,342,484
AlexNet	51.6%	48.5%	50.0%	50.0%	56,858,656
CNN3 [1]	80.5%	75.6%	84.0%	78.1%	619,202

Concluding Remarks

Conclusion:

- Investigated the efficacy of the ENAS approach for designing CNN architectures for breast lesion classification from US.
- Demonstrated that the ENAS technique reduces human interventions in CNN architecture design.
- The optimized architectures lead to more accurate classification yet simpler models than hand-crafted alternatives for breast lesion classification.

• Future work:

- Evaluating ENAS models on external datasets
- Exploiting ENAS architectures for other types of tumors/lesions from ultrasound images

