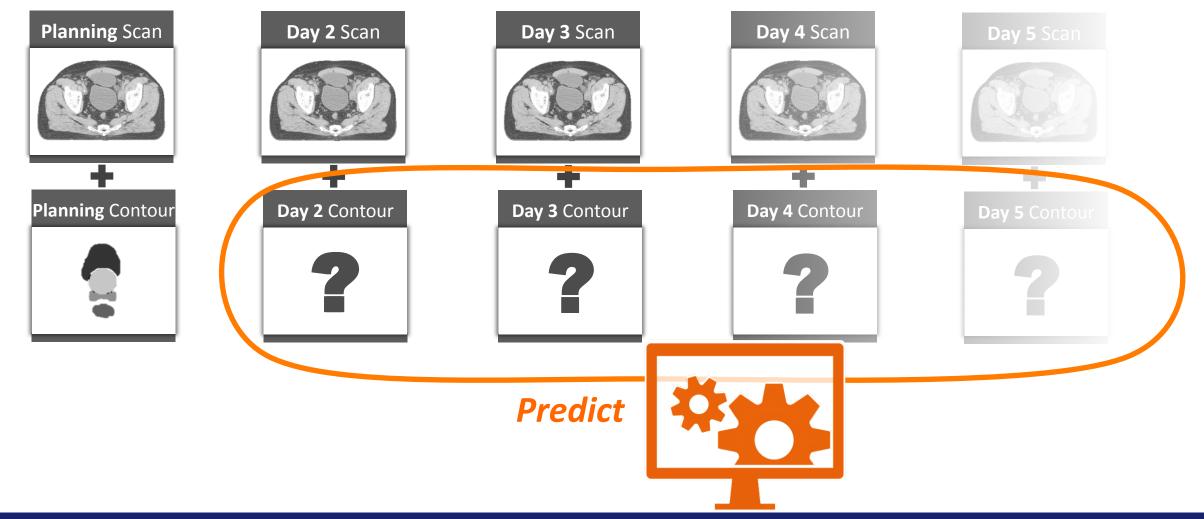
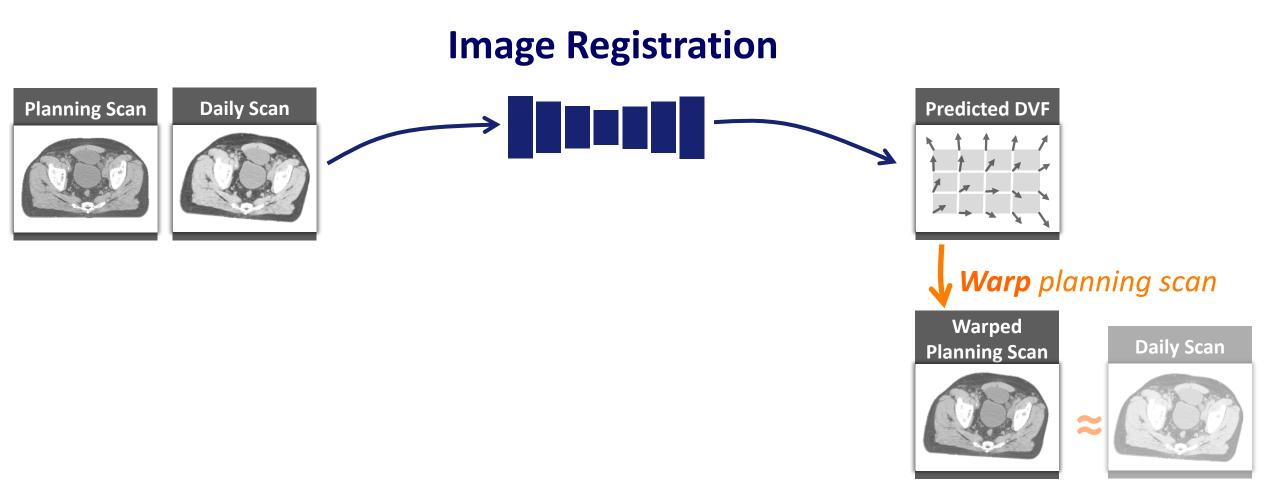
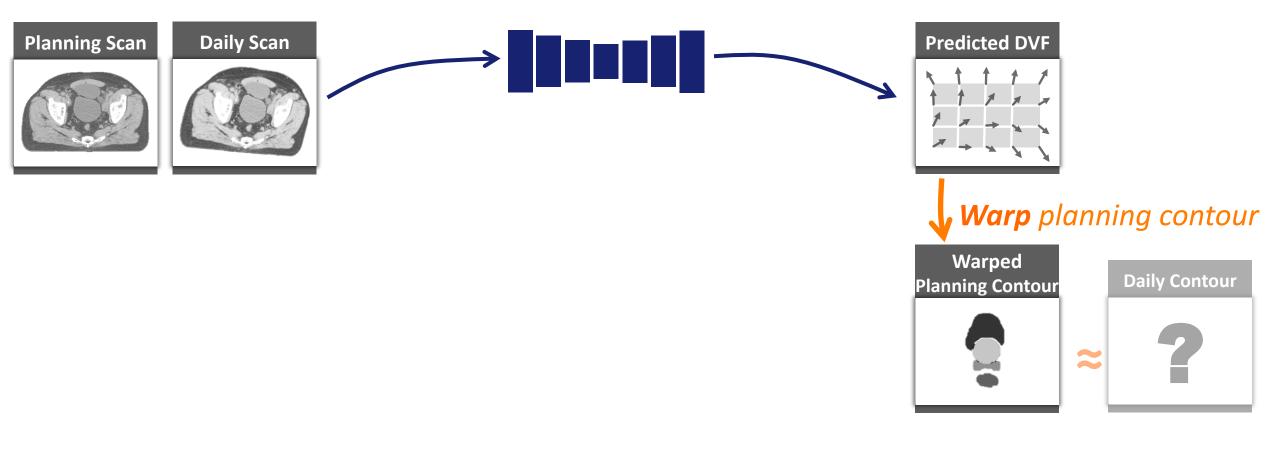

A Cross-Stitch Architecture for Joint Registration and Segmentation in Adaptive Radiotherapy


Laurens Beljaards¹, Mohamed S. Elmahdy², Fons Verbeek¹, Marius Staring^{2,3}

- ¹ Leiden Institute of Advanced Computer Science
- ² Division of Image Processing, Department of Radiology, Leiden University Medical Center
- ³ Department of Radiation Oncology, Leiden University Medical Center


• Online Adaptive Radiotherapy: Time intensive

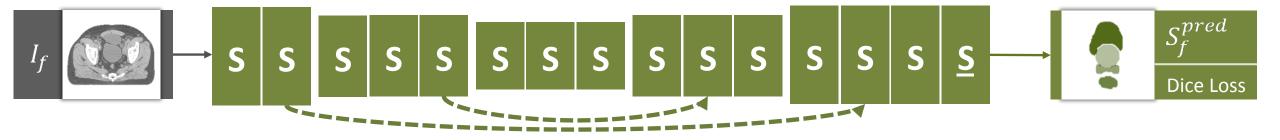
Generating Contours

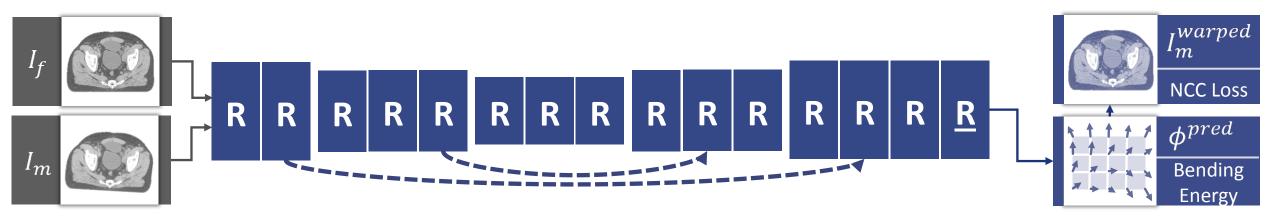


Generating Contours

Generating Contours

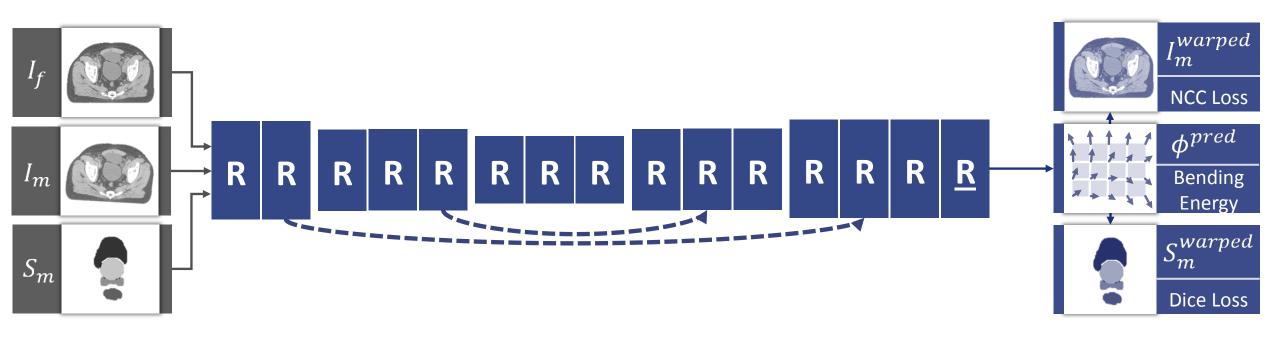
Contour Propagation

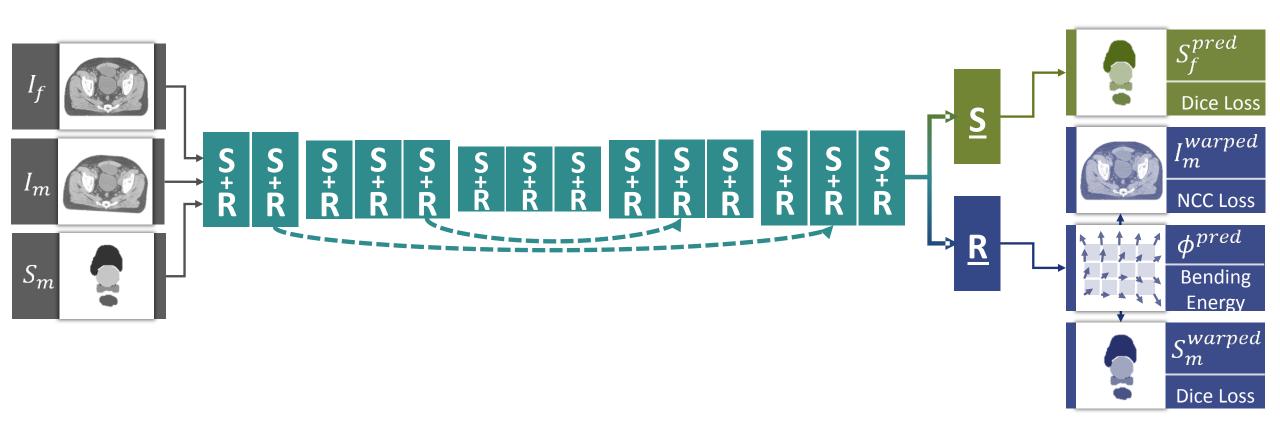

Overview


- **Registration** with contour propagation:
 - Prior knowledge of the patient's anatomy (Planning scan & contour)
- Segmentation:
 - Robust to organ **deformations**

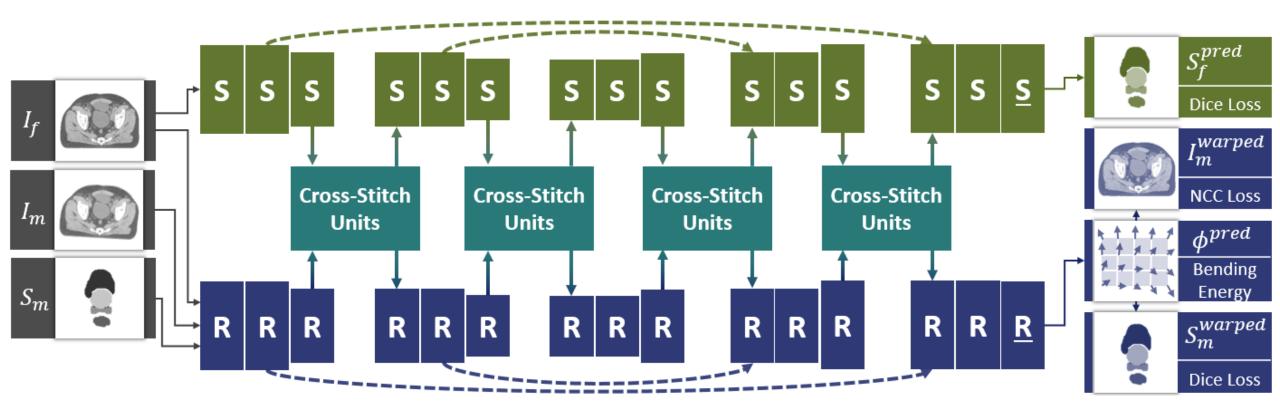
Overview

- Registration with contour propagation: Prior knowledge of the patient's anatomy (Planning scan & contour)
- Segmentation:
 - Robust to organ deformations
- Joining the two methods to exploit their strengths
- A) Joint-Registration-Segmentation (JRS) through loss for contour propagation
- B) We combine Segmentation and Registration in one joint network


Segmentation and Registration Networks


	Prostate	Seminal vesicles	Rectum	Bladder
	$\mu\pm\sigma$	$\mu \pm \sigma$	$\mu\pm\sigma$	$\mu \pm \sigma$
Segmentation	1.49 ± 0.3	2.50 ± 2.6	3.39 ± 2.2	$\textbf{1.60} \pm \textbf{1.1}$
Registration	$\bf 1.43 \pm 0.8$	$\boldsymbol{1.71 \pm 1.4}$	$\textbf{2.44} \pm \textbf{1.1}$	3.40 ± 2.3

JRS-Registration Network


	Prostate	Seminal vesicles	Rectum	Bladder
	$\mu\pm\sigma$	$\mu \pm \sigma$	$\mu \pm \sigma$	$\mu \pm \sigma$
Segmentation	1.49 ± 0.3	2.50 ± 2.6	3.39 ± 2.2	$\textbf{1.60} \pm \textbf{1.1}$
Registration	1.43 ± 0.8	1.71 ± 1.4	2.44 ± 1.1	3.40 ± 2.3
JRS-Registration	$\textbf{1.20} \pm \textbf{0.4}$	$\bf 1.35 \pm 0.7$	$\textbf{2.08} \pm \textbf{1.0}$	2.63 ± 2.3

Fully Hard Parameter Sharing Network

		Prostate	Seminal vesicles	Rectum	Bladder
	Output Path	$\mu\pm\sigma$	$\mu \pm \sigma$	$\mu\pm\sigma$	$\mu\pm\sigma$
Segmentation		1.49 ± 0.3	2.50 ± 2.6	3.39 ± 2.2	1.60 ± 1.1
Registration		1.43 ± 0.8	1.71 ± 1.4	2.44 ± 1.1	3.40 ± 2.3
JRS-Registration		1.20 ± 0.4	1.35 ± 0.7	2.08 ± 1.0	2.63 ± 2.3
Fully Hard Sharing	Segmentation	1.14 ± 0.4	1.73 ± 2.1	$\textbf{1.91} \pm \textbf{0.9}$	$\textbf{1.04}\pm\textbf{0.7}$
	Registration	1.20 ± 0.3	$\bf 1.33 \pm 0.7$	2.16 ± 1.1	2.56 ± 1.9

Cross-Stitch Network

Results in terms of MSD

• + denotes a significant difference (at p = 0.05) with the cross-stitch network

		Prostate	Seminal vesicles	Rectum	Bladder
	Output Path	$\mu\pm\sigma$	$\mu\pm\sigma$	$\mu\pm\sigma$	$\mu\pm\sigma$
Segmentation		$1.49 \pm 0.3^{\dagger}$	$2.50\pm2.6^{\dagger}$	$3.39 \pm 2.2^{\dagger}$	$1.60 \pm 1.1^{\dagger}$
Registration		$1.43 \pm 0.8^{\dagger}$	$1.71 \pm 1.4^{\dagger}$	$2.44 \pm 1.1^{\dagger}$	$3.40 \pm 2.3^{\dagger}$
JRS-Registration		$1.20 \pm 0.4^{\dagger}$	1.35 ± 0.7	$2.08 \pm 1.0^{\dagger}$	$2.63 \pm 2.3^{\dagger}$
Fully Hard Sharing	Segmentation	$1.14\pm0.4^{\dagger}$	1.73 ± 2.1	1.91 ± 0.9	$1.04 \pm 0.7^{\dagger}$
	Registration	$1.20\pm0.3^{\dagger}$	1.33 ± 0.7	$2.16 \pm 1.1^{\dagger}$	$2.56 \pm 1.9^{\dagger}$
Cross-Stitch	Segmentation	$\boldsymbol{1.06\pm0.3}$	$\boldsymbol{1.27\pm0.4}$	$\boldsymbol{1.76\pm0.8}$	$\boldsymbol{0.91\pm0.4}$
	Registration	1.10 ± 0.3	1.30 ± 0.6	2.00 ± 1.0	2.45 ± 2.1

Comparison with State-of-the-Art Methods

- "Elastix"⁽¹⁾: Conventional iterative method using Elastix software¹ with MI similarity measure
- *"JRS-GAN"*⁽²⁾: An **unsupervised GAN** to jointly perform deformable image registration and segmentation
- "Hybrid"⁽³⁾: A hybrid learning and iterative approach. It uses domain specific strategies to further improve the registration

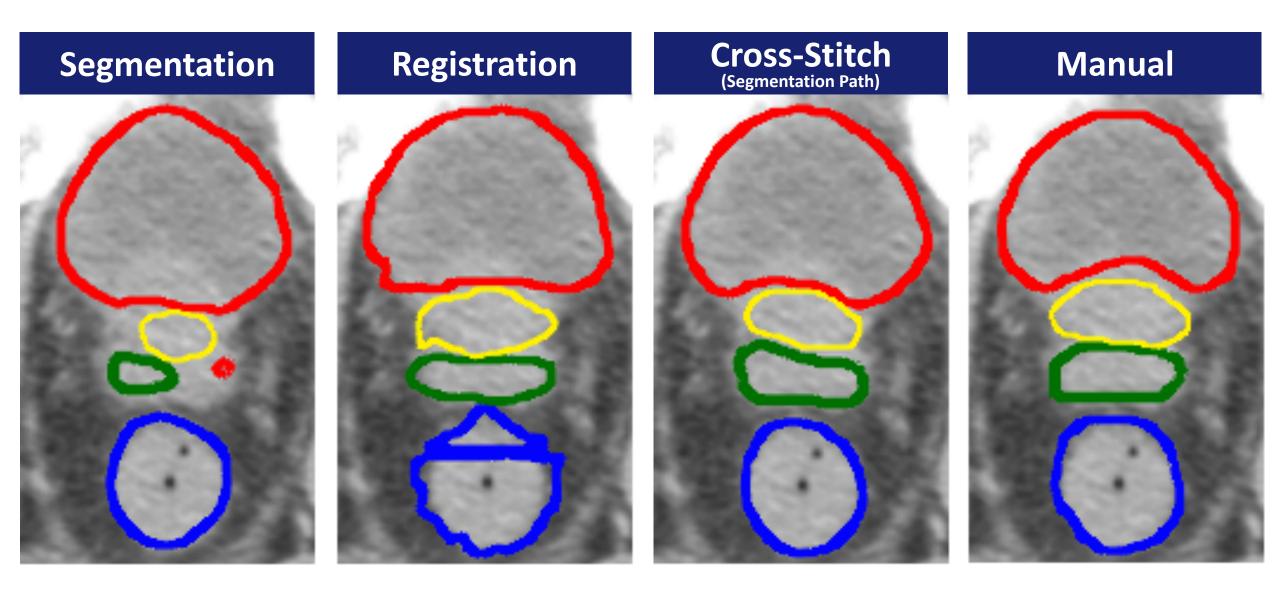
¹ S. Klein, M. Staring, K. Murphy, M.A. Viergever, J.P.W. Pluim. elastix: a toolbox for intensity based medical image registration, IEEE Transactions on Medical Imaging, vol. 29, no. 1, pp. 196 - 205, January 2010

² Mohamed S. Elmahdy, Jelmer Wolterink, et al. Adversarial Optimization for Joint Registration and Segmentation in Prostate CT Radiotherapy. In Lecture Notes in Computer Science (pp. 366–374). Springer, 2019

³ Mohamed S. Elmahdy, Thyrza Jagt, et al. Robust contour propagation using deep learning and image registration for online adaptive proton therapy of prostate cancer. Medical physics, 2019

Results – Validation Set (HMC Dataset)

- Results in terms of MSD on the validation set (HMC dataset)
- + denotes a significant difference (at p = 0.05) with the cross-stitch network


		Prostate		Seminal vesicles		Rectum		Bladder	
	Output Path	$\mu \pm \sigma$	Median	$\mu \pm \sigma$	Median	$\mu \pm \sigma$	Median	$\mu \pm \sigma$	Median
Cross-Stitch	Segmentation	$\textbf{1.06} \pm \textbf{0.3}$	0.99	1.27 ± 0.4	1.15	$\bf 1.76 \pm 0.8$	1.47	$\boldsymbol{0.91\pm0.4}$	0.82
	Registration	1.10 ± 0.3	1.06	1.30 ± 0.6	1.13	2.00 ± 1.0	1.75	2.45 ± 2.1	1.81
Elastix		$1.73\pm0.7^{\dagger}$	1.59	$2.71 \pm 1.6^{\dagger}$	2.45	$3.69 \pm 1.2^{\dagger}$	3.50	$5.26\pm2.6^{\dagger}$	4.72
JRS-GAN		$1.14\pm0.3^{\dagger}$	1.04	$1.75\pm1.3^{\dagger}$	1.44	$2.17\pm1.1^\dagger$	1.89	$2.25\pm1.9^\dagger$	1.54
Hybrid		$1.27\pm0.3^{\dagger}$	1.25	$1.47 \pm 0.5^{\dagger}$	1.32	$2.03\pm0.6^{\dagger}$	1.85	$1.75 \pm 1.0^{\dagger}$	1.26

Results – Independent Test Set (EMC Dataset)

- Results in terms of MSD on the **independent test set** (EMC dataset)
- The networks have **not been retrained** or fine-tuned on this dataset

	Prostate		Seminal vesicles		Rectum		Bladder	
Output Path	$\mu\pm\sigma$	Median	$\mu\pm\sigma$	Median	$\mu\pm\sigma$	Median	$\mu\pm\sigma$	Median
Segmentation	$3.18\pm1.8^\dagger$	2.57	$9.33 \pm 10.1^{\dagger}$	5.82	$5.79\pm3.4^{\dagger}$	5.18	$\boldsymbol{1.88 \pm 1.5}$	1.50
Registration	$2.01 \pm 2.5^{\dagger}$	1.18	$2.86\pm5.2^{\dagger}$	1.18	$2.89 \pm 2.5^{\dagger}$	2.23	$5.98 \pm 4.7^{\dagger}$	4.44
Cross-Stitch Segmentation	1.88 ± 2.2	1.21	4.73 ± 8.0	1.42	3.61 ± 5.0	2.18	2.45 ± 2.4	1.24
Registration	1.82 ± 2.4	1.09	2.45 ± 5.0	1.02	2.57 ± 2.3	2.10	4.93 ± 4.1	2.69
Elastix	1.42 ± 0.7	1.17	$2.07\pm2.6^{\dagger}$	1.24	$3.20 \pm 1.6^{\dagger}$	3.07	$5.30\pm5.1^{\dagger}$	3.27
Hybrid	$1.55\pm0.6^{\dagger}$	1.36	$\boldsymbol{1.65 \pm 1.3}$	1.22	2.65 ± 1.6	2.36	$3.81 \pm 3.6^{\dagger}$	2.26

Visual Examples

Conclusion

- Combined segmentation and registration through loss and architecture
- Fully hard-sharing network and cross-stitch network

Conclusion

- Combined segmentation and registration through loss and architecture
- Fully hard-sharing network and cross-stitch network
- Superior accuracy over separate networks
- Good performance when compared to state-of-the-art methods

Conclusion

- Combined segmentation and registration through loss and architecture
- Fully hard-sharing network and cross-stitch network
- Superior accuracy over separate networks
- Good performance when compared to state-of-the-art methods
- Future work:

Generalization across datasets Third task, next to registration and segmentation tasks