



Marcel Bengs, Nils Gessert, Alexander Schlaefer

Hamburg University of Technology, Institute of Medical Technology and Intelligent Systems

Institute of Medical Technology and Intelligent Systems



A Deep Learning Approach for Motion Forecasting Using 4D OCT Data

# Motivation: Motion Forecasting



#### Radiotherapy



### Intraoperative Imaging



# Deep Learning and Spatio-temporal OCT



Optical Coherence Tomography (OCT)



We propose a deep learning approach for motion estimation and forecasting using sequences of OCT volumes

<sup>1</sup> Gessert, Nils, et al. Two-path 3D CNNs for calibration of system parameters for OCT-based motion compensation. In: Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling. International Society for Optics and Photonics, 2019. S. 1095108.

## Deep Learning Methods and Data Set





#### Data Set

- Swept-source OCT device (OMES, OptoRes)
- 40 different ROIs of a chicken breast sample
  - 100 different trajectories each



<sup>1</sup> Gessert, Nils, et al. Two-path 3D CNNs for calibration of system parameters for OCT-based motion compensation. In: Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling. International Society for Optics and Photonics, 2019. S. 1095108.

### Results and Discussion



#### Using a stream of volumes improves estimation performance and allows for forecasting

