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Types of methods

Methods Speed
Manual --- +++
Multi-atlas segmentation - +
Bayesian segmentation + ++
Supervised CNN +++ ---

Modality-agnostic
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Modality-specific CNN
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Supervised segmentation
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Problems with supervised CNNs

• only work on modalities they were trained with

• require supervised data

• sensitive to pre-processing
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Solution: Synthesise data…

CNN
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synthetic data
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…of random contrast !
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Generation of T1 contrast
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Generation of random contrast
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Predicted label map
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ABIDE ADHD HABRE GSP MCIC OASIS PPMI

DBST2T1

PDT1

Testing

T1-39:
39 subjects

T1mix:
1,000 subjects

FSM:
18 subjects

T1-PD-8:
8 subjects

Training

Datasets
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Competing methods

• T1-baseline: T1 supervised CNN

• SAMSEG [1]: modality-agnostic Bayesian segmentation

• SynthSeg

• SynthSeg-rule: trained with realistic contrasts

[1] Puonti et al., Neuroimage, 2016.
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Dice scores

T1mix
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Dice scores

T1mix
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Dice scores

T1mix
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Dice scores

T1mix
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T1 segmentation examples
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Ground Truth T1 baseline SAMSEG SynthSeg-ruleSynthSeg

T2-PD segmentation examples
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Key points

• SynthSeg enables fast contrast-agnostic segmentation of 
brain MRI scans, without retraining.

• SynthSeg does not require any preprocessing.

• SynthSeg only requires a set of segmentations as training data.

• Augmentation beyond realistic measures enables better 
generalisation.



23

Future directions

SynthSeg

PV-SynthSeg
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Useful links
• A Learning Strategy for Contrast-agnostic MRI Segmentation

MIDL 2020
https://arxiv.org/abs/2003.01995

• Generative model:
https://github.com/BBillot/lab2im

• SynthSeg:
https://github.com/BBillot/SynthSeg

• Partial Volume Segmentation of Brain MRI Scans of any Resolution 
and Contrast
MICCAI 2020
https://arxiv.org/abs/2003.01995

https://arxiv.org/abs/2003.01995
https://github.com/BBillot/lab2im
https://github.com/BBillot/SynthSeg
https://arxiv.org/abs/2003.01995

