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Medical Image Segmentation

u Unsupervised Methods

u Clustering algorithms, level set methods, etc.

u Do not depend on ground truth labels.

u Can be computationally expensive.

u Supervised Methods

u Deep neural networks.

u Require a training stage but can be fast in testing phase.

u Usually need a large amount of accurately annotated training data.

u Especially hard for medical images.



Learning ACWE using a ConvNet

u Combine the best of both supervised and unsupervised methods.

u We propose a self-supervised ConvNet-based segmentation method.

u An unsupervised loss is based on the Active Contour without Edges (ACWE) [1].

u No ground truth labels are needed during training.

u The trained network provides fast segmentation after training.

u Segmentation accuracy can be further improved by fine-tuning using a small set of labeled 
images.



Method

u ConvNet 𝑓!(𝑔): 
u A 5-layer Recurrent convolutional neural network [2].

u An unsupervised loss function that is on the basis of the ACWE:

u ℒ!"#$ = 𝑣 $ 𝐴𝑟𝑒𝑎 𝑓% 𝑔 > 0 + ∑&! ' () 𝑔 − 𝑐* + +∑&! ' ,) 𝑔 − 𝑐+ +

u 𝑔: input image, 𝑐*: mean value inside the segmentation, 𝑐+: mean value outside.

u An optional supervised loss function that is also based on the ACWE [3]:

u ℒ-./0- = ∑&! ' |∇(𝑓% 𝑔 )| + ∑1 𝟏 − 𝑓% 𝑔 + − 𝟎 − 𝑓% 𝑔 + 𝒖

u Ω: image spatial domain, 𝒖: ground truth label.

u Can also use Dice loss or Cross-entropy loss.



Experiments & Results

u Evaluated four modes:

u Mode1: Unsupervised (self-supervised) training with ℒ!"#$.

u Mode2: Mode1 + fine-tuning using ℒ-./0- with 10 ground truth (GT) labels.

u Mode3: Mode1 + fine-tuning using ℒ-./0- with 80 GT labels. 

u Mode4: Training with ℒ!"#$ + ℒ-./0-.

u Tested on the task of bone segmentation in Tc-99m SPECT simulations generated 
based on the XCAT phantom [4-6].

u Quantitative Results:
Mode1 Mode2 Mode3 Mode4 Level set ACWE

DSC 0.593±0.19 0.661±0.16 0.732±0.12 0.856±0.09 0.518±0.337

Proposed Method Level set ACWE

Time per Image (Sec.) 0.006 ± 0.022 2.698±0.085



Results
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