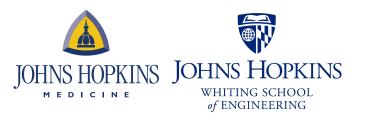
Medical Image Segmentation via Unsupervised Convolutional Neural Network

Junyu Chen, Eric Frey

Department of Radiology and Radiological Science, Johns Hopkins Medical Institutes, Baltimore, MD, USA Department of Electrical and Computer Engineering, Johns Hopkins University , Baltimore, MD, USA

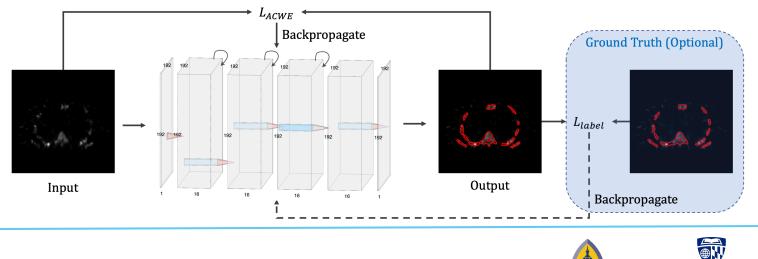


Medical Image Segmentation

- Unsupervised Methods
 - Clustering algorithms, level set methods, etc.
 - Do not depend on ground truth labels.
 - Can be computationally expensive.
- Supervised Methods
 - Deep neural networks.
 - Require a training stage but can be fast in testing phase.
 - Usually need a large amount of accurately annotated training data.
 - Especially hard for medical images.

Learning ACWE using a ConvNet

- Combine the best of both supervised and unsupervised methods.
 - We propose a self-supervised ConvNet-based segmentation method.
 - An unsupervised loss is based on the Active Contour without Edges (ACWE) [1].
 - No ground truth labels are needed during training.
 - The trained network provides fast segmentation after training.
 - Segmentation accuracy can be further improved by fine-tuning using a small set of labeled images.



f ENGINEERING

Method

- ConvNet $f_{\theta}(g)$:
 - ► A 5-layer Recurrent convolutional neural network [2].
- An unsupervised loss function that is on the basis of the ACWE:
 - $\mathcal{L}_{ACWE} = v \cdot Area(f_{\theta}(g) > 0) + \sum_{f_{\theta}(g) > 0} |g c_1|^2 + \sum_{f_{\theta}(g) \le 0} |g c_2|^2$
 - ▶ g: input image, c_1 : mean value inside the segmentation, c_2 : mean value outside.
- An optional supervised loss function that is also based on the ACWE [3]:

$$\mathcal{L}_{label} = \sum_{f_{\theta}(g)} |\nabla(f_{\theta}(g))| + \sum_{\Omega} \left(\left(\mathbf{1} - f_{\theta}(g) \right)^{2} - \left(\mathbf{0} - f_{\theta}(g) \right)^{2} \right) \boldsymbol{u}$$

- Ω : image spatial domain, u: ground truth label.
- Can also use Dice loss or Cross-entropy loss.

Experiments & Results

- Evaluated four modes:
 - ▶ Mode₁: Unsupervised (self-supervised) training with \mathcal{L}_{ACWE} .
 - ▶ Mode₂: Mode1 + fine-tuning using \mathcal{L}_{label} with 10 ground truth (GT) labels.
 - Mode₃: Mode1 + fine-tuning using \mathcal{L}_{label} with 80 GT labels.
 - Mode₄: Training with $\mathcal{L}_{ACWE} + \mathcal{L}_{label}$.
- Tested on the task of bone segmentation in Tc-99m SPECT simulations generated based on the XCAT phantom [4-6].
- Quantitative Results:

	Mode ₁	٨	Node ₂	Mode ₃	Mode ₄	Level set ACV	٧E	
DSC	0.593±0.19	0.6	61±0.16	0.732±0.12	0.856±0.09	0.518±0.337	7	
			Propo	osed Method	Level	Level set ACWE		
Time per Image (Sec.)			0.006 ± 0.022		2.698±0.085			

Results

Input Image	Ground Truth	Mode ₁	Mode ₂	Mode ₃	Mode ₄	Level Set ACWE
BORN LOURS	12 mar	Martin	Constant of the second	Costa	Charles and	Access
110- 110-	egge					

References

- 1. Chan, Tony F., and Luminita A. Vese. "Active contours without edges." *IEEE Transactions* on image processing 10.2 (2001): 266-277.
- 2. Liang, Ming, and Xiaolin Hu. "Recurrent convolutional neural network for object recognition." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2015.
- 3. Chen, Xu, et al. "Learning active contour models for medical image segmentation." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2019.
- 4. Segars, W. Paul, et al. "4D XCAT phantom for multimodality imaging research." *Medical physics* 37.9 (2010): 4902-4915.
- 5. Frey, E. C., and B. M. W. Tsui. "A practical method for incorporating scatter in a projector-backprojector for accurate scatter compensation in SPECT." *IEEE Transactions on Nuclear Science* 40.4 (1993): 1107-1116.
- 6. Kadrmas, Dan J., Eric C. Frey, and Benjamin MW Tsui. "An SVD investigation of modeling scatter in multiple energy windows for improved SPECT images." *IEEE transactions on nuclear science* 43.4 (1996): 2275-2284.

