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Adversarial Examples in Medical Imaging Analysis
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Adversarial Examples in Medical Imaging Analysis
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IID Machine Learning vs Adversarial Machine Learning
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Accelerated MRI Reconstruction
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FastMRI results: loss of meniscal tear

MIDL 2020 victorcheng21@Berkeley.edu 8



The False Negative Phenomenon
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Iwo hypotheses for the false negative problem:

1) The information of small abnormality features is completely lost through the
under- sampling process

2) The information of small abnormality features is not completely lost. Instead, it
is atfenuated and laid in the tail-end of the task distribution, hence is rare
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FNAF: false-negative adversarial feature

A perceptible small feature which is present in the ground fruth MRI but has
disappeared upon MRI reconstruction.
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Adversarial Examples and Attacks
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Adversarial Examples and Attacks
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FNAF Attack

max L(6,x + 8, y)]
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Under-sampling information preservation

D(x+6,x)>¢
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Adversarial robustness training E maxL(0. x + O
(x,y)~D[ Ses ( ) »Y)]

Robust training loss: :
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Attack loss: i Reconstruction loss:
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Experimental Results

Table 1: Standard validation set evaluation with SSIM and normalized mean-square error
(NMSE)

4x SSIM NMSE
U-Net 0.7213 £ 0.2621 | 0.03455 £ 0.05011
I-RIM 0.7501 £ 0.2546 | 0.03413 £ 0.05800
FNAF-robust U-Net | 0.7197 4+ 0.2613 | 0.03489 + 0.05008

8% SSIM NMSE
U-Net 0.6548 £+ 0.2942 | 0.04935 £ 0.04962
I-RIM 0.6916 £ 0.2941 | 0.04438 £ 0.06830
FNAF-robust U-Net | 0.6533 4= 0.2924 | 0.04962 + 0.05670

Table 2: FNAF attack evaluations.

4 RS (Attack Rate %) | FD (Attack Rate %) | RS (MSE) | FD (MSE)

U-Net 84.44 72.17 | 0.001530 | 0.001386

I-RIM 44.49 34.60 0.001164 0.001080
FNAF-robust U-Net 12.71 10.48 0.000483 0.000466

RS (Attack Rate %) | FD (Attack Rate %) | RS (MSE) | FD (MSE)
86.00 74.84 [70.001592 | 0.001457
77.39 63.88 | 0.001470 | 0.001349
FNAF-robust U-Net 15.09 13.30 | 0.000534 | 0.000467
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Qualitative Results

The top row (A-D) shows a "failed” FNAF attack. The bottom row (E-H) shows a "successful” FNAF attack. Column 1
contains the under-sampled zero-filled images. Column 2 contains the fully-sampled ground truth images. Column 3
contains U-Net reconstructed images. Column 4 contains FNAF-robust U-Net reconstructed images. (C-G-D-H) FNAF

reconstruction: (C) adversarial loss of 0.000229. (G) adversarial loss of 0.00110. (D) adversarial loss of 9.73 - 10-5. (H)
adversarial loss of 0.000449
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Information Preservation (IP)

D(x+6,x)>¢

Random | U-Net FNAF | I-RIM FNAF | Robust U-Net FNAF
Acceptance Rate (%) | 99.82 99.72 99.76 99.34

IP Loss (MSE) 0.00064 |  0.00050 0.00051 0.00052
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FNAF Attack Loss vs. IP Loss
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FNAF Location Distribution and Transferability

FNAF location distribution within the 120x120 center crop of the image of (A) U-Net, (B) I-RIM, (C) FNAF-robust U-Net

We take FNAF examples from U-Net and apply them to I-RIM, and observe a 89.48% attack rate.
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Real-world Abnormalities reconstruction

Cartilage Lesion Rate | Meniscus Lesion Rate

FNAF-robust U-Net

(A) Ground truth: small cartilage lesion in femur. (B) U-Net: Area of cartilage lesion not defined and
resembles increased signal intensity. (C) FNAF-robust U-Net: Cartilage lesion preserved but less clear.
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Limitations

 FNAF affack hif rate was defined heuristically
« Atfack inner maximization optimization has no guaranfee and can be expensive
« Adversarial training is only empirically robust

 Limited real world abnormalities evaluation
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Conclusions and Future directions

 Two hypotheses

1) The information of small abnormality features is completely lost through the
under- sampling process

2) The information of small abnormality features is not completely lost. Instead, it
is atfenuated and laid in the tail-end of the task distribution, hence is rare

« Address our limitations

« Robustness in other medical imaging tasks
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