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Adversarial Examples in Medical Imaging Analysis
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Adversarial Examples in Medical Imaging Analysis
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IID Machine Learning vs Adversarial Machine Learning
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Average Case
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Under-sampled 
k-space

Fully-sampled 
k-space

Methods

Accelerated MRI Reconstruction
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FastMRI results: loss of meniscal tear
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The False Negative Phenomenon
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Two hypotheses for the false negative problem:

1) The information of small abnormality features is completely lost through the 
under- sampling process

2) The information of small abnormality features is not completely lost. Instead, it 
is attenuated and laid in the tail-end of the task distribution, hence is rare



FNAF: false-negative adversarial feature
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A perceptible small feature which is present in the ground truth MRI but has 
disappeared upon MRI reconstruction.
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Adversarial Examples and Attacks
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Adversarial Examples and Attacks
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Under-sampling information preservation
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Adversarial robustness training
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Experimental Results
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Qualitative Results

The top row (A-D) shows a ”failed” FNAF attack. The bottom row (E-H) shows a ”successful” FNAF attack. Column 1 
contains the under-sampled zero-filled images. Column 2 contains the fully-sampled ground truth images. Column 3 
contains U-Net reconstructed images. Column 4 contains FNAF-robust U-Net reconstructed images. (C-G-D-H) FNAF 
reconstruction: (C) adversarial loss of 0.000229. (G) adversarial loss of 0.00110. (D) adversarial loss of 9.73 · 10−5. (H) 
adversarial loss of 0.000449



MIDL 2020 19victorcheng21@Berkeley.edu

Information Preservation (IP)
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FNAF Attack Loss vs. IP Loss
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A B C

FNAF Location Distribution and Transferability

FNAF location distribution within the 120x120 center crop of the image of (A) U-Net, (B) I-RIM, (C) FNAF-robust U-Net

We take FNAF examples from U-Net and apply them to I-RIM, and observe a 89.48% attack rate.
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Real-world Abnormalities reconstruction

(A) Ground truth: small cartilage lesion in femur. (B) U-Net: Area of cartilage lesion not defined and 
resembles increased signal intensity. (C) FNAF-robust U-Net: Cartilage lesion preserved but less clear.
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Limitations

• FNAF attack hit rate was defined heuristically

• Attack inner maximization optimization has no guarantee and can be expensive

• Adversarial training is only empirically robust

• Limited real world abnormalities evaluation
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Conclusions and Future directions

• Two hypotheses

1) The information of small abnormality features is completely lost through the 
under- sampling process

2) The information of small abnormality features is not completely lost. Instead, it 
is attenuated and laid in the tail-end of the task distribution, hence is rare

• Address our limitations

• Robustness in other medical imaging tasks
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