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Low-dose Computed Tomography
• Ionizing radiation dose from CT is a 

central consideration for safe imaging

• Low-dose CT increases noise and 
impedes the readability of the scan

• Iterative or deep learning reconstruction 
can improve signal-to-noise

• Real projection data is often proprietary 
and limits data for model development
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• Data from AAPM Low-dose CT Challenge
• 5/2/3 patients training/validation/testing split 

(4,748/1,193/2,373 axial images) 
• Min-max normalization (0 to 1.0) of network inputs

• Trained end-to-end for 30 epochs using the 
Adam optimizer with a learning rate of 10-4

• Early stopping of 10 and real-time data 
augmentation of training images to reduce 
model overfitting

• Loss function: weighted sum of multi-scale 
structural similarity and absolute error

• ~11.5m parameters per U-net

Network Structures and Training Protocol
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Results
Routine-dose CT FI W-net

Low-dose CT

SSIM: 0.857
PSNR: 35.76
NRMSE: 1.63

I U-net

SSIM: 0.939
PSNR: 40.58
NRMSE: 0.94

F U-net

SSIM: 0.933
PSNR: 39.19
NRMSE: 1.10

IF W-net

SSIM: 0.943
PSNR: 40.80
NRMSE: 0.91

II W-net

SSIM: 0.938
PSNR: 40.56
NRMSE: 0.94

FF W-net

SSIM: 0.926
PSNR: 39.19
NRMSE: 1.10

SSIM: 0.945
PSNR: 41.01
NRMSE: 0.89
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Discussion and Conclusions
• Dual-domain approaches were quantitatively superior to single-domain U-nets 

and W-nets
• Minimal qualitative differences between image-domain and dual-domain approaches

• Poor qualitative results of the spatial frequency domain networks were likely a 
result of optimizing the perceptual loss of the frequency spectrum

• Denoised images appear overly smoothed compared to routine-dose 
references and differ in noise characteristics

• Data quality and quantity is a limiting factor for denoising performance
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