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Case 1: displaced patches source 
with displacement label (-2,+1)

Case 2: displaced patches target domain 
without known label

feature CNN 
(shared) classifier 2

see you in Lübeck for MIDL 2021
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Motivation and basic concept of multimodal domain adaptation
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ultrasound guided brain 
tumour surgery (MNI McGill)

multimodal registration has clinical 
impact but 3/3 DL-approaches failed in 
CuRIOUS US-MRI registration challenge  

open for participation (MICCAI 2020):  
learn2reg.grand-challenge.org

Unsupervised Domain Adaptation by Backpropagation

Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form
a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the
feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-
based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and
the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made
similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

and (Long & Wang, 2015) is thus different from our idea
of matching distribution by making them indistinguishable
for a discriminative classifier. Below, we compare our ap-
proach to (Tzeng et al., 2014; Long & Wang, 2015) on the
Office benchmark. Another approach to deep domain adap-
tation, which is arguably more different from ours, has been
developed in parallel in (Chen et al., 2015).

3. Deep Domain Adaptation
3.1. The model
We now detail the proposed model for the domain adap-
tation. We assume that the model works with input sam-
ples x 2 X , where X is some input space and cer-
tain labels (output) y from the label space Y . Below,
we assume classification problems where Y is a finite set
(Y = {1, 2, . . . L}), however our approach is generic and
can handle any output label space that other deep feed-
forward models can handle. We further assume that there
exist two distributions S(x, y) and T (x, y) on X ⌦ Y ,
which will be referred to as the source distribution and
the target distribution (or the source domain and the tar-
get domain). Both distributions are assumed complex and
unknown, and furthermore similar but different (in other
words, S is “shifted” from T by some domain shift).
Our ultimate goal is to be able to predict labels y given
the input x for the target distribution. At training time,
we have an access to a large set of training samples
{x1,x2, . . . ,xN} from both the source and the target do-
mains distributed according to the marginal distributions
S(x) and T (x). We denote with di the binary variable (do-
main label) for the i-th example, which indicates whether
xi come from the source distribution (xi⇠S(x) if di=0) or
from the target distribution (xi⇠T (x) if di=1). For the ex-
amples from the source distribution (di=0) the correspond-

ing labels yi 2 Y are known at training time. For the ex-
amples from the target domains, we do not know the labels
at training time, and we want to predict such labels at test
time.
We now define a deep feed-forward architecture that for
each input x predicts its label y 2 Y and its domain label
d 2 {0, 1}. We decompose such mapping into three parts.
We assume that the input x is first mapped by a mapping
Gf (a feature extractor) to a D-dimensional feature vector
f 2 RD. The feature mapping may also include several
feed-forward layers and we denote the vector of parame-
ters of all layers in this mapping as ✓f , i.e. f = Gf (x; ✓f ).
Then, the feature vector f is mapped by a mapping Gy (la-
bel predictor) to the label y, and we denote the parameters
of this mapping with ✓y . Finally, the same feature vector f
is mapped to the domain label d by a mapping Gd (domain
classifier) with the parameters ✓d (Figure 1).
During the learning stage, we aim to minimize the label
prediction loss on the annotated part (i.e. the source part)
of the training set, and the parameters of both the feature
extractor and the label predictor are thus optimized in or-
der to minimize the empirical loss for the source domain
samples. This ensures the discriminativeness of the fea-
tures f and the overall good prediction performance of the
combination of the feature extractor and the label predictor
on the source domain.
At the same time, we want to make the features f
domain-invariant. That is, we want to make the dis-
tributions S(f) = {Gf (x; ✓f ) |x⇠S(x)} and T (f) =
{Gf (x; ✓f ) |x⇠T (x)} to be similar. Under the covariate
shift assumption, this would make the label prediction ac-
curacy on the target domain to be the same as on the source
domain (Shimodaira, 2000). Measuring the dissimilarity
of the distributions S(f) and T (f) is however non-trivial,
given that f is high-dimensional, and that the distributions

Ganin & Lempitsky: Unsupervised domain adaptation by Backpropagation ICML 2015

challenges for multimodal DL registration 
1) features / metrics (useful for unsupervised 

DL-reg) are only well defined for 
monomodal registration 

2) ground truth correspondences/labels 
across multimodal scans are extremely  rare

➞ unsupervised domain adaptation could be ideally 
suited to address this problem with deep learning  

contributions of this paper:  
1) employ appropriate setting for domain adaptation 
for multimodal registration (first time this is done)  
2) novel discrepancy metric: projected Earth Mover’s 
(efficient and accurate approximate implementation) 

Y Xiao, et al.: Evaluation of MRI to ultrasound registration methods for brain shift correction the CuRIOUS TMI 2019
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Discrepancy of classifiers domain adaptation
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Lee: Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation CVPR 2019

source domain with labels, target 
domain without 
two differently initialised classifiers, shared 
feature extractor 
A) update both feature extractor & 
classifier: source supervision 
B) upd. classifiers to maximise classifier 
discrepancy on target 
C) upd. feature extractors to minimise 
discrepancy on target 
➞ shifts target distributions into 
‘correct’ decision boundaries 

Saito: Maximum Classifier Discrepancy for Unsupervised Domain Adaptation CVPR 2018 

B) C)

discrepancy measure is pivotal in steps B/C 
sliced Wasserstein (SWD) state-of-the-art for Dirac-like softmax 
distributions, but it is permutation invariant ➞ not sensitive 
for spatial displacements in discrete registration
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Projected Earth Mover’s discrepancy for discrete displacements
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Case 1: displaced patches source 
with displacement label (-2,+1)

Case 2: displaced patches target 
domain without known label

feature 
CNN 
(shared)

classifier 1

classifier 2

predicted 
displacement 
probabilities

cumulative histogramproject 2D to 1D along certain angles

discrete patch-based registration (25 displacement "classes") 
shared feature extractor - concatenation of fixed and moving 
supervised with labels on T1 (source domain): cross-entropy loss  
➞ unsupervised adaptation of feature extractor and classifier for 
new domain / modality (T2, multi-contrast) p-EMD discrepancy 
2D experiments on MICCAI SATA 2013 canine dataset 
range of displacements: {−38, −19, 0, +19, +38}2 pixels 

Earth Mover’s distance (EMD) solves optimal transport 
problem, exact solution for 1D histograms exist 
Our novel 2D (3D) approximation projects histograms 
onto 1D using multiple angles followed by cumulative 
histogram ➞ discrepancy larger if peaks are spatially distant

Wermann: A Distance Metric for Multidimensional Histograms CVGIP 1985
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Initial experimental results and multimodal work-in-progress
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tricks that help: scale prediction by 0.1 before softmax, supervised update only for classifier 1 with labels 
combination of 16 projection p-EMD (0-90°) + sliced Wasserstein (SWD)) outperforms state-of-the-art (SWD) by 11%

experimental validation (test 
accuracy over epochs)

paper: synthetic patch-based registration only MR T1/T2 
four blocks of Conv2d, InstanceNorm and PReLU (13k weights)  
➞ 18x18 feature map with 16 channels 
concatenated for three block classification network (70k weights) 
➞ prediction of 25D classification vector  
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new: fully deformable MR-CT (81 real registrations) 
21x21 (441) displacement labels, graphical model 
regularisation and instance optimisation as post-
processing, ➞  Heinrich Closing the gap..  MICCAI 2019 
dataset ➞ Blendowski Learning .. multi-modal feat. MIDL 2019

no registration pEMD domain adaptMR/CT slices 6 organs

test CT/MR no reg train MR/
MR

train MR/
MR & CT/CT

multimodal 
domain adapt

Dice 
(6 labels)

50.1% ±19 45.8% ±23 55.1% ±21 60.2% ±18


