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Introduction: Lesion segmentation & classification

= Liver lesion segmentation has attracted attention in recent years, with publicly available datasets that enable
comparison between different methods.

= |n practice, it is also important to separate between malignant and benign lesions by classifying detected lesions.

= Liver lesion classification is far less investigated with very limited-sized datasets explored and no public data
available.

»We focus on classification of liver CT images that include both benign and malignant lesions.
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Introduction: Main challenge

= The lack of sufficient amounts of annotated data is one of the main challenges in the medical imaging domain.
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= Transfer learning has been proven to have better performance when = Adding an additional branch for classification results in improved
the tasks of the source and target network are similar [1]. segmentation performance [2].
[1] Mohammad Hesam Hesamian, Wenjing Jia, Xiangjian He, and Paul Kennedy. Deep learningtechniques for medical image [2] Mehta, Sachin, et al. "Y-Net: joint segmentation and classification for diagnosis of breast biopsy
segmentation: Achievements and challenges.Journal of digitalimaging, 32(4):582-596, 2019 images." International Conference on Medical Image Computing and Computer Intervention. Springer, Cham, 2018.
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Data

Sheba dataset

\"1Y%
= 332 2D CT slices taken from 140 patients.

= Annotations of: qh

- liver segmentation
- lesion segmentation
- lesion classification into 3 classes: cyst, hemangioma, metastasis

* Private dataset

LiTS dataset (Liver Tumor Segmentation)

= 1303D CT scans (~60,000 2D CT slices).

= Annotations of: LITS Challenge
- liver segmentation
- lesion segmentation

* Publicly available dataset
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Methods: The proposed frameworks

Multi-task Learning (Y-Net)
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» We perform fine-tuning with different weights initialization:
1) Training from scratch (random initialization).
2) Fine-tuning with ImageNet weights
3) Fine-tuning with LiTS weights (self-trained lesion segmentation model). <= Same domain!
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Results & Conclusions

mmmm Cyst mmmm Hemangioma = Vletastasis

Training strategy Fine-tuning Cls Acc Seg Dice Seg Recall
scratch 0.55 - -
1. Classification baseline ImageNet 0.63 - -
LiTS 0.76 - -
scratch - 0.59 0.59
2. Segmentation baseline ImageNet - 0.63 0.67
e l__uiTS ! 07L _ _ _____ 072_ __ _ .
I scratch 0.43 0.49 0.43 I
: 3. Multi-task learning (Y-Net) ImageNet 0.68 0.67 0.65 :
I LiTS 0.79 0.71 0.68 I
I scratch 0.63 0.57 0.60 I
: 4. Joint learning ImageNet 0.74 0.64 0.70 :
I LiTS 0.86 0.71 0.76 I
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input Ground joint multi-task
truth learning learning

v The simple joint framework outperforms the commonly used multi-task architecture (17%).
v Pretraind with LiTS better than imageNet (1 12%).

» Joint network classification and localization context are shared for mutual benefit.
» Pre-training the network with data from the same domain improves feature learning and generalization.
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