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Introduction: Lesion segmentation & classification
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§ Liver lesion segmentation has attracted attention in recent years, with publicly available datasets that enable 
comparison between different methods. 

§ In practice, it is also important to separate between malignant and benign lesions by classifying detected lesions. 

§ Liver lesion classification is far less investigated with very limited-sized datasets explored and no public data 
available.

ØWe focus on classification of liver CT images that include both benign and malignant lesions.

Lesion class



Introduction: Main challenge

§ The lack of sufficient amounts of annotated data is one of the main challenges in the medical imaging domain.
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[2] Mehta, Sachin, et al. "Y-Net: joint segmentation and classification for diagnosis of breast biopsy 
images." International Conference on Medical Image Computing and Computer Intervention. Springer, Cham, 2018.

§ Transfer learning has been proven to have better performance when 
the tasks of the source and target network are similar [1].

§ Adding an additional branch for classification results in improved 
segmentation performance [2].

[1] Mohammad Hesam Hesamian, Wenjing Jia, Xiangjian He, and Paul Kennedy. Deep learningtechniques for medical image 
segmentation: Achievements and challenges.Journal of digitalimaging, 32(4):582–596, 2019
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Data

LiTS dataset  (Liver Tumor Segmentation) 
§ 130 3D CT scans (~60,000  2D CT slices).

§ Annotations of:
- liver segmentation
- lesion segmentation

Metastasis Cyst Hemangioma

Sheba dataset
§ 332 2D CT slices taken from 140 patients.

§ Annotations of:
- liver segmentation
- lesion segmentation
- lesion classification into 3 classes: cyst,  hemangioma,  metastasis * Private dataset

* Publicly available dataset
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Methods: The proposed frameworks

Ø We perform fine-tuning  with different weights initialization:
1) Training from scratch (random initialization).
2) Fine-tuning with ImageNet weights
3) Fine-tuning with LiTS weights (self-trained lesion segmentation model). Same domain!
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Results & Conclusions

ü The simple joint framework outperforms the commonly used multi-task architecture (   7%).
ü Pretraind with LiTS better than imageNet (   12%).

Ø Joint network classification and localization context are shared for mutual benefit.
Ø Pre-training the network with data from the same domain improves feature learning and generalization.
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