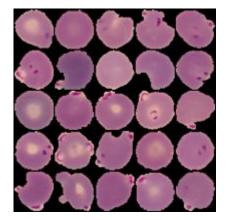
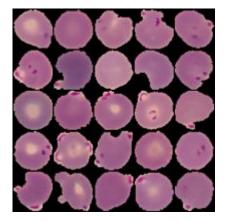
DIVA: Domain Invariant Variational Autoencoders

In collaboration with Jakub Tomczak, Christos Louizos and Max Welling Why do we care about domain generalization/invariance?

Patient 1

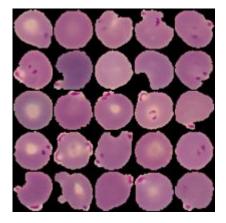


Patient 1



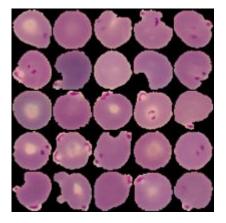
Malaria dataset

Patient 1



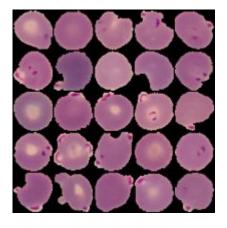
Malaria dataset 1 cell == 1 image

Patient 1

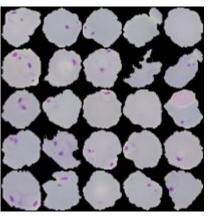


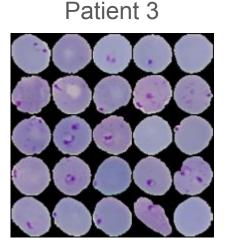
Malaria dataset 1 cell == 1 image Task: infected vs. uninfected

Patient 1

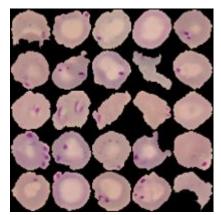


Patient 2



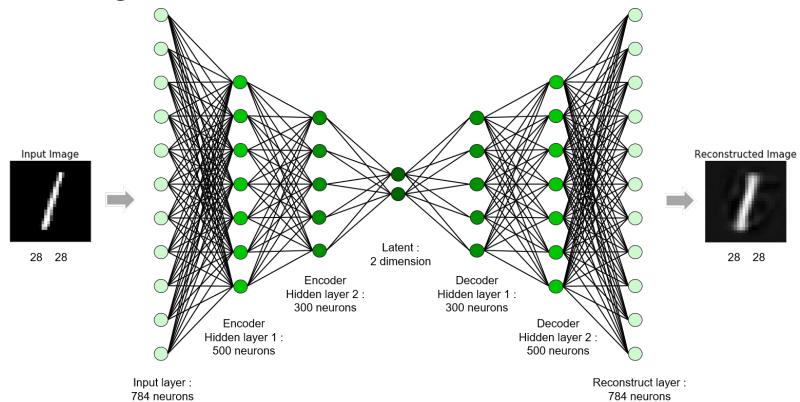


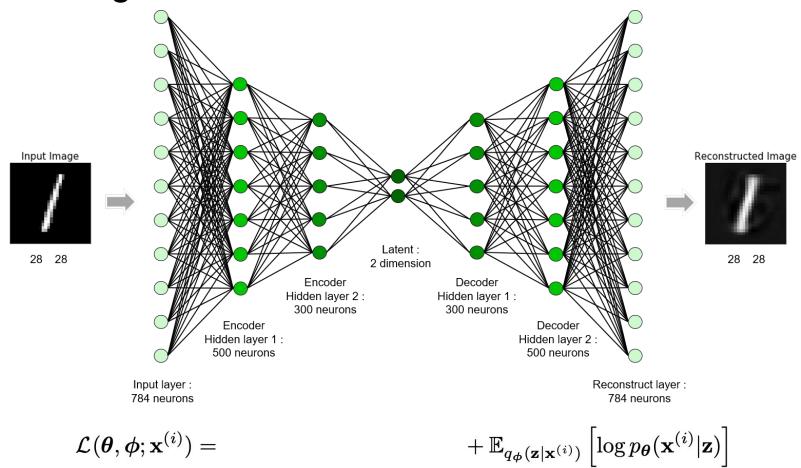
Patient 4



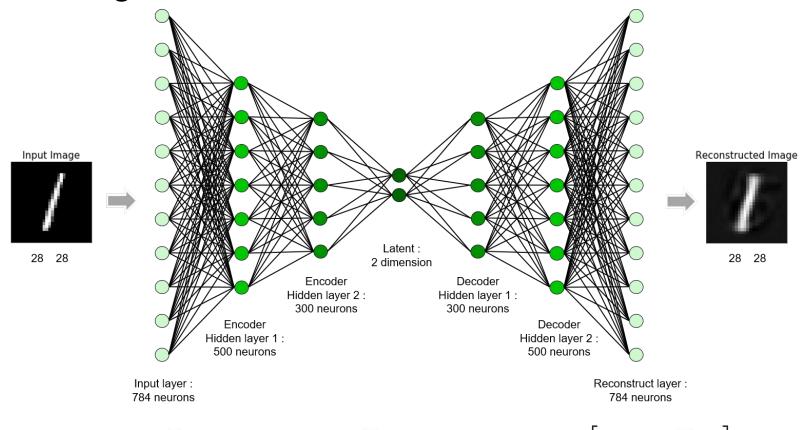
Malaria dataset 1 cell == 1 image Task: infected vs. uninfected

Can we disentangle the staining and the virus?





⁽Kingma and Welling, 2014)



$$\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) = -D_{KL}(q_{\boldsymbol{\phi}}(\mathbf{z} | \mathbf{x}^{(i)}) || p_{\boldsymbol{\theta}}(\mathbf{z})) + \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z} | \mathbf{x}^{(i)})} \left[\log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)} | \mathbf{z}) \right]$$

(Kingma and Welling, 2014)

0 (23456789 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Two latents:

$$z_1 \rightarrow Content$$

 $z_2 \rightarrow Style$

0 (23456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0 1 2 3 4 5 6 7 8 9 01234567 0 1 2 3 4 5 6 9

Two latents:

z₁ -> Content z₂ -> Style

Changing one doesn't change the other

0 (23456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0 1 2 3 4 5 6 7 8 9 0123456789 0 1 2 3 4 5 6

Two latents:

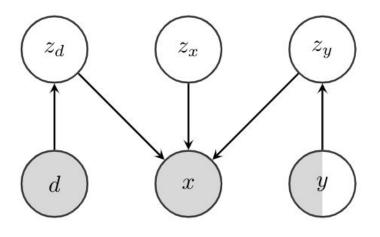
z₁ -> Content z₂ -> Style

Changing one doesn't change the other

Idea: Just use z₁ for classification

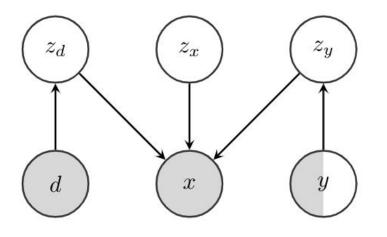
0 (23456789 0123456789 0123456789 0123456789 0123456789 0123456789 0123456789 0 1 2 3 4 5 6 7 8 9 0123456789 0 1 2 3 4 5 6 7

DIVA



Generative

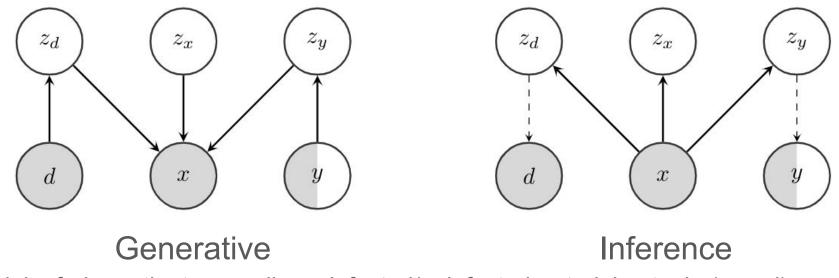
DIVA



Generative

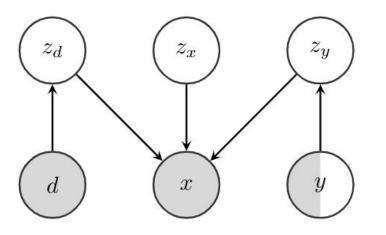
Think of: d = patient, x = cell, y = infected/uninfected -> training tuple (x, y, d)

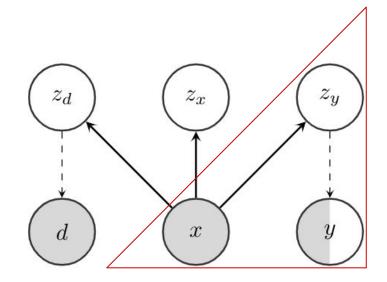
DIVA



Think of: d = patient, x = cell, y = infected/uninfected -> training tuple (x, y, d)

Our model: DIVA

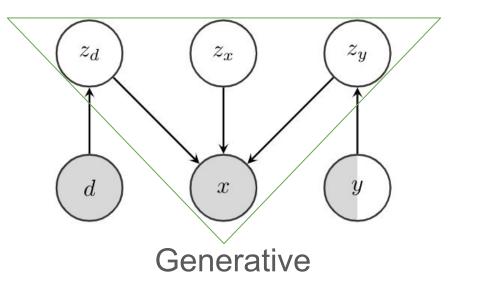


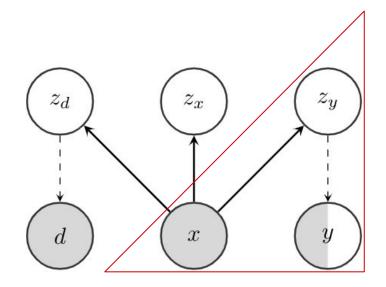


Generative

Think of: d = patient, x = cell, y = infected/uninfected -> training tuple (x, y, d) **Red**: CNN for classification of y, dashed arrows == auxiliary classifiers

Our model: DIVA

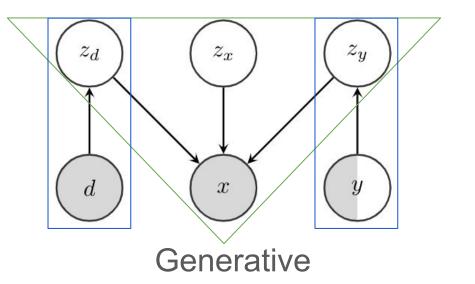


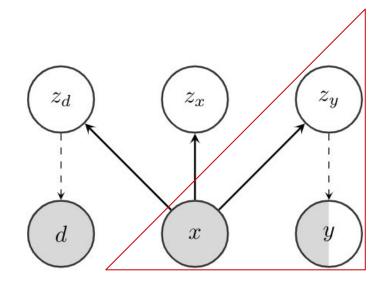


Inference

Think of: d = patient, x = cell, y = infected/uninfected -> training tuple (x, y, d) **Red**: CNN for classification of y, dashed arrows == auxiliary classifiers Green: Reconstruction of x

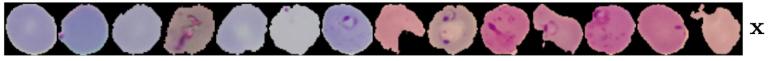
Our model: DIVA

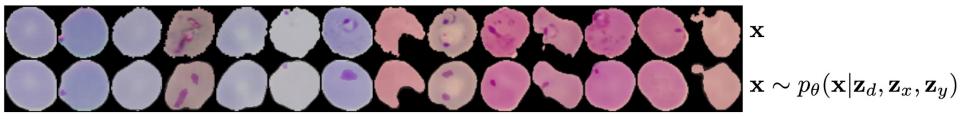


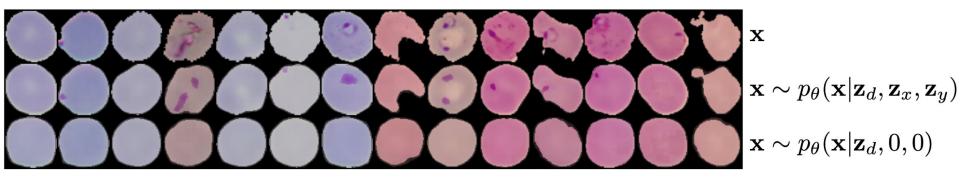


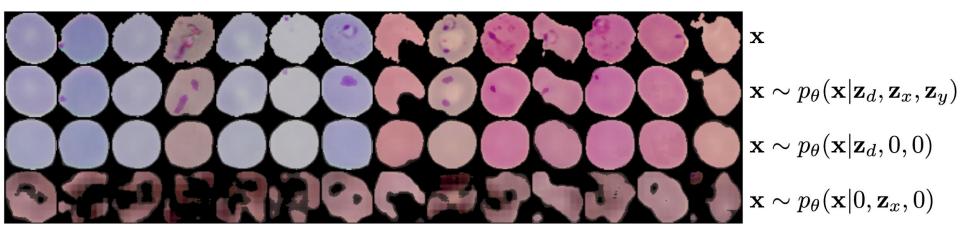
Inference

Think of: d = patient, x = cell, y = infected/uninfected -> training tuple (x, y, d) **Red**: CNN for classification of y, dashed arrows == auxiliary classifiers Green: Reconstruction of x Blue: Conditional prior distributions









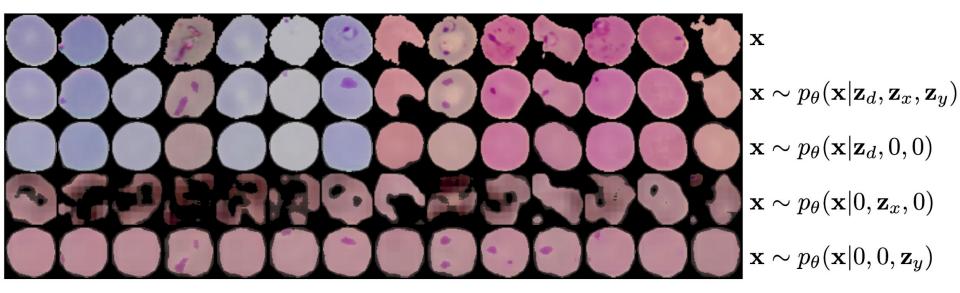


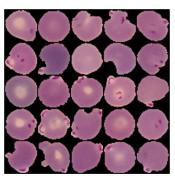
Table 3: Results of the supervised experiments for the first part of domains. We report the average and standard error of ROC AUC.

Model	C116P77	C132P93	C137P98	C180P141	C182P143	C184P145
Baseline	90.6 ± 0.7	97.8 ± 0.5	98.9 ± 0.2	98.5 ± 0.2	96.7 ± 0.4	98.1 ± 0.2
DA	90.6 ± 1.7	$\textbf{98.3} \pm \textbf{0.4}$	99.0 ± 0.1	98.8 ± 0.1	96.9 ± 0.4	97.1 ± 0.8
DIVA	$\textbf{93.3} \pm \textbf{0.4}$	$\textbf{98.4} \pm \textbf{0.3}$	99.0 ± 0.1	$\textbf{99.0} \pm \textbf{0.1}$	96.5 ± 0.3	$\textbf{98.5} \pm \textbf{0.3}$

Table 4: Results of the supervised experiments for the second part of domains. As well as the average across all domains. We report the average and standard error of ROC AUC.

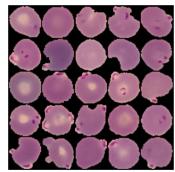
Model	C39P4	C59P20	C68P29	C99P60	Average
Baseline	97.1 ± 0.4	82.8 ± 2.8	95.3 ± 0.6	96.2 ± 0.1	95.2 ± 1.6
DA	97.4 ± 0.3	83.2 ± 3.3	$\textbf{96.3} \pm \textbf{0.1}$	96.1 ± 0.3	95.4 ± 1.6
DIVA	$\textbf{97.8} \pm \textbf{0.2}$	82.1 ± 3.0	$\textbf{96.3} \pm \textbf{0.2}$	$\textbf{96.6} \pm \textbf{0.3}$	95.8 ± 1.6

If I want to generalise to this patient



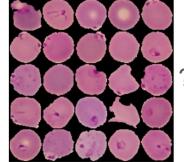
(a) C116P77

If I want to generalise to this patient



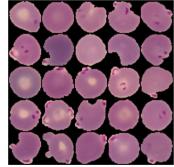
(a) C116P77

Does it help to have unlabeled data from this patient



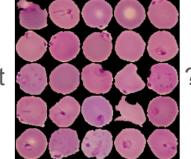
(h) C59P20

If I want to generalise to this patient



(a) C116P77

Does it help to have unlabeled data from this patient



(h) C59P20

Training data	Baseline	DA	DIVA
Labeled data from C59P20	90.6 ± 0.7	90.6 ± 1.7	$\textbf{93.3} \pm \textbf{0.4}$
Unlabeled data from C59P20	-	72.05 ± 2.2	$\textbf{79.4} \pm \textbf{2.8}$
No data from C59P20	70.0 ± 2.6	69.2 ± 1.9	71.9 ± 2.7

Thank you for your attention!