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Presentation overview

• On the (un)certainty of weak labels

• Tightness prior: application to bounding boxes

• Constraining a deep network during training

• Results and conclusion
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On the (un)certainty of weak labels



Weak labels

Blue: background, green: foreground, no-color: unknown.

Full labels are expensive, but weak labels are difficult to use
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Constrained-CNN losses, with points [Kervadec et al., MedIA’19]

Partial cross-entropy on the foreground pixels, with size constraint:

min
θ

∑
p∈ΩL

− log(spθ )

s.t. a ≤
∑
p∈Ω

spθ ≤ b

θ Network parameters

Ω Image space

ΩL ⊂ Ω Labeled pixels

p ∈ Ω pixel

spθ Foreground probability
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Constrained-CNN losses, with points [Kervadec et al., MedIA’19]

It works well, but required some precise size information (a, b).

How to realistically get it?

A bounding box gives a natural upper size.
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But cannot do the opposite with a box

Partial cross-entropy on the background pixels, with size constraint:

min
θ

∑
p∈ΩO

− log(1− spθ )

s.t.
∑
p∈Ω

spθ ≤ |ΩI |

ΩO Outside of the box

ΩI Inside of the box

1− spθ Background probability
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Why it does not work?

min
θ

∑
p∈ΩO

− log(1− spθ )

s.t.
∑
p∈Ω

spθ ≤ |ΩI |

Introduce massive imbalance in training.

No explicit supervision to predict foreground.

Result: It predicts only background.

7



Why it does not work?

min
θ

∑
p∈ΩO

− log(1− spθ )

s.t.
∑
p∈Ω

spθ ≤ |ΩI |

Introduce massive imbalance in training.

No explicit supervision to predict foreground.

Result: It predicts only background.

7



Why it does not work?

min
θ

∑
p∈ΩO

− log(1− spθ )

s.t.
∑
p∈Ω

spθ ≤ |ΩI |

Introduce massive imbalance in training.

No explicit supervision to predict foreground.

Result: It predicts only background.

7



Why it does not work?

min
θ

∑
p∈ΩO

− log(1− spθ )

s.t.
∑
p∈Ω

spθ ≤ |ΩI |

Introduce massive imbalance in training.

No explicit supervision to predict foreground.

Result: It predicts only background.

7



Dirty solution – Mixed labels

We could mix the two kind of labels.

But defeat the purpose of having less annotations.
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Dirty solution – Ugly heuristic

Or use a heuristic: The center of the box is always foreground.
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Dirty solution – Ugly heuristic

Hypothesis: The same part of the box always belong to the foreground.

Does it hold for more complex, deformable objects?

If the camel moves, our heuristic will be wrong.
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Tightness prior



Tightness prior

The classical tightness prior [Lempitsky et al., ICCV’09] states that:

Any line parallel to the box will cross the camel, at some point.
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Tightness prior

Which can be generalized:

A segment of width w will cross-the camel w times.
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Formal definition



Formal definition

SL := {sl} set of segments

w width of a segment

yp ∈ {0, 1} true label for pixel p

∑
p∈sl

yp ≥ w ∀sl ∈ SL
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Updating the formulation

We can update our bounding box supervision model:

min
θ
LO(θ)

s.t.
∑
p∈Ω

spθ ≤ |ΩI |

s.t.
∑
p∈sl

spθ ≥ w ∀sl ∈ SL.

LO Loss outside the box

∑
p∈sl s

p
θ Sum on continuous values

Gives an optimization problem with dozens of constraints.
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On constrained deep-networks during training

Penalty method such as [Kervadec et al., MedIA’19] or tweaked Lagrangian methods

[Nandwani et al., 2019, Pathak et al., 2015] crumble with many competing constraints.

Recent work on extended log-barrier [Kervadec et al., 2019b] is much more robust:

15



On constrained deep-networks during training

Penalty method such as [Kervadec et al., MedIA’19] or tweaked Lagrangian methods

[Nandwani et al., 2019, Pathak et al., 2015] crumble with many competing constraints.

Recent work on extended log-barrier [Kervadec et al., 2019b] is much more robust:

15



Extended log-barrier

The ext. log-barrier is integrated directly into the loss function.

Model to optimize:

min
x
L(x)

s.t. z ≤ 0

Model w/ extended log-barrier:

min
x
L(x) + ψ̃t(z)
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Final model

min
θ
LO(θ) + λ

∑
sl∈SL

ψ̃t

(
w −

∑
p∈sl

sθ(p)

)+ ψ̃t

∑
p∈Ω

spθ − |ΩI |


Two simple hyper-parameters: weight λ for the tightness prior, t common to all

constraints.
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Evaluation and results



Datasets and baseline

Evaluate on two dataset:

• PROMISE12: prostate segmentation [Litjens et al., 2014]

• ATLAS: Ischemic stroke lesions [Liew et al., 2018]

Use DeepCut [Rajchl et al., 2016] as baseline and comparison.
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Results

Method
PROMISE12 ATLAS

DSC DSC

Deep cut [Rajchl et al., 2016] 0.827 (0.085) 0.375 (0.246)

LO

s.t. tightness prior NA 0.161 (0.145)

s.t. tightness prior + box upper bound 0.835 (0.032) 0.474 (0.245)

Full supervision (Cross-entropy) 0.901 (0.025) 0.489 (0.294)

Results on both PROMISE12 and ATLAS datasets.
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Results

Predicted segmentation on the validation set for the two tasks.
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Conclusion

Tightness prior, as a series of constraints, enables direct use of bounding boxes.

Compatible with other losses.

More details in the paper (inner working of LO , computational cost, tightness

sensitivity).

Code is publicly available:

https://github.com/LIVIAETS/boxes_tightness_prior
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