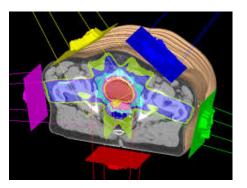
Deep Reinforcement Learning for Organ Localization in CT

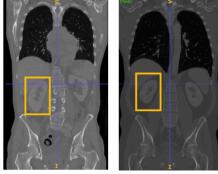
Fernando Navarro ^{1,2,}, Anjany Sekuboyina ^{1,2}, Diana Waldmannstetter ¹, Jan C. Peeken ², Stephanie E. Combs ², Bjoern H. Menze ¹

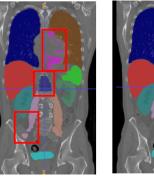
¹ Department of Informatics And Mathematics, Technical University of Munich, Germany.

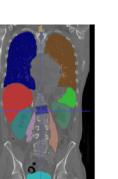
² Department of Radio Oncology and Radiation Therapy, Klinikum rechts der Isar, Germany

Motivation







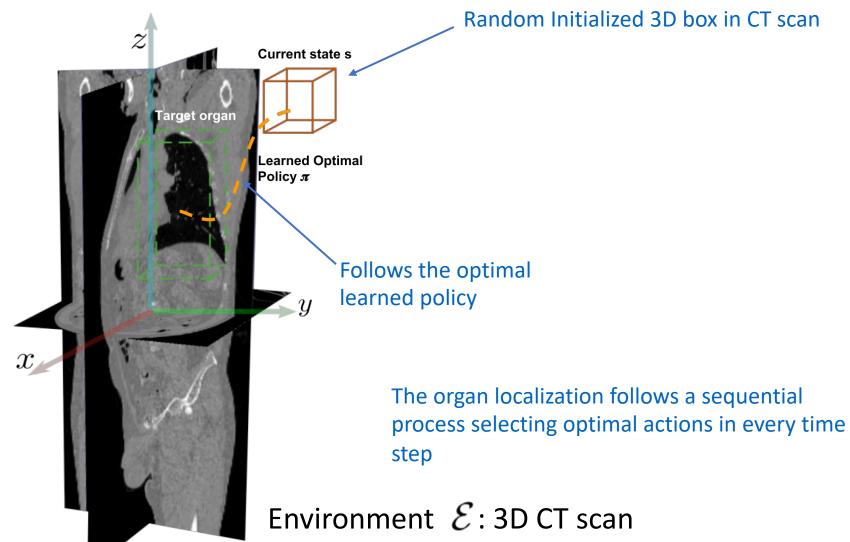




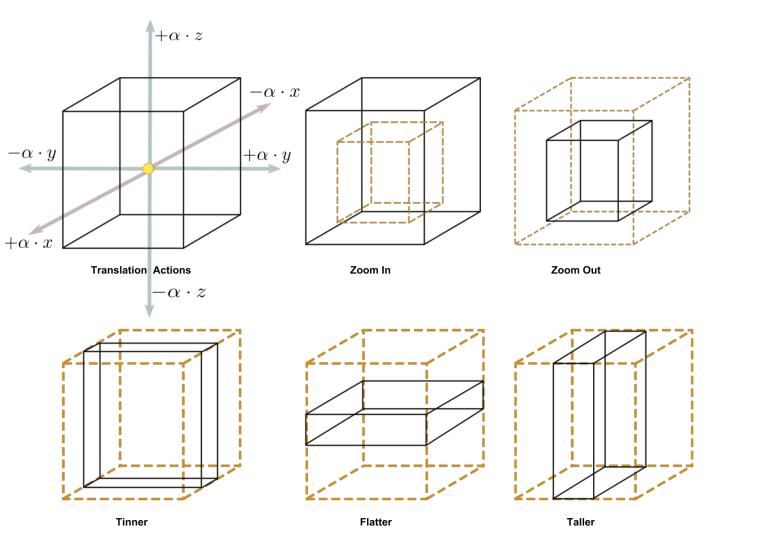
Contributions

- We show for the first time that deep reinforcement learning (RL) can be effective for the task or organ localization.
- The introduction of a new set of 11 actions, which are tailored for organ localization in RL to account for the variability of organs' sizes and shapes.
- We show that for the task of organ localization, RL can learn under a limited data regimen compared to CNNs.

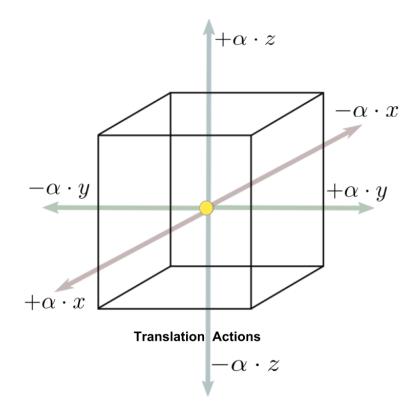
Method



The Action Space

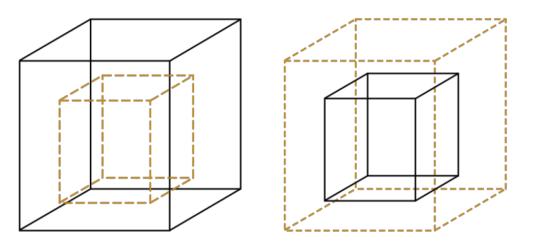


Translation



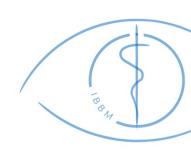
 Translation actions do not change the neither the size nor the aspect ratio of the box.

Global Scaling

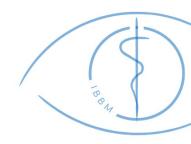


Zoom In

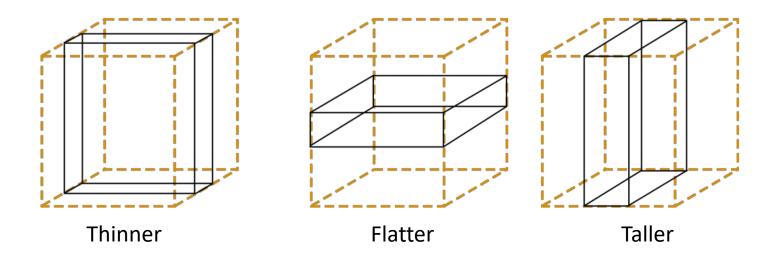
Zoom Out



• These actions change the size of the box but preserve the aspect ratio.

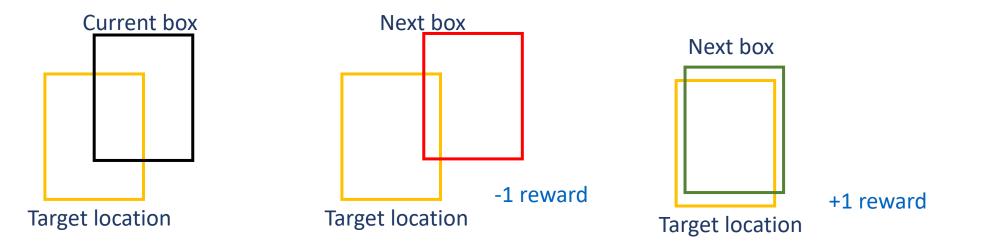


Aspect Ratio Actions



- The actions deform on one of the faces of the bounding box.
- These actions are responsible for changes in the aspect ratio of the box

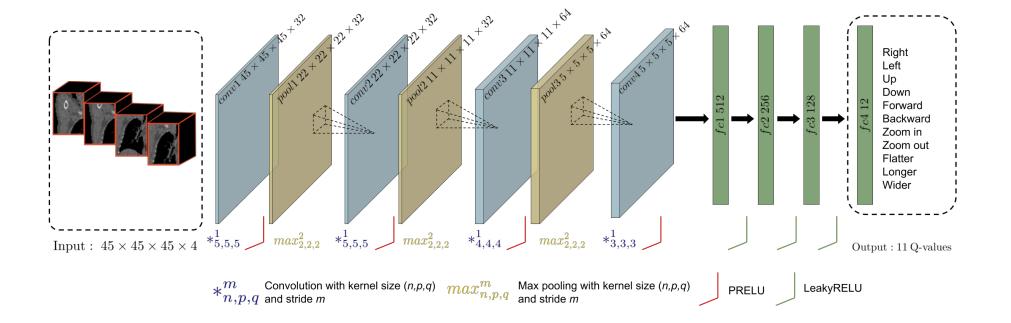
Reward Function



$$R_a(s,s') = sign(IoU(b',g) - IoU(b,g))$$

Finding the Optimal Policy

10



• Loss function to optimize:

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s',a') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]_{\mathcal{N}}$$

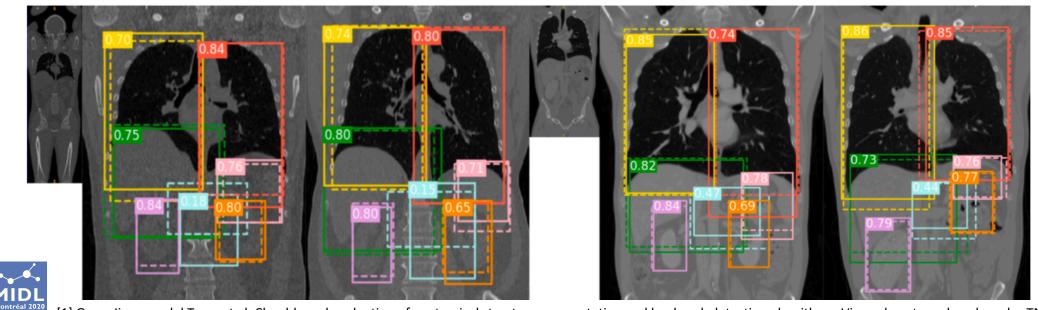
Mnih, et. Al . Human-level control through deep reinforcement learning. Nature, 2015.
Amir Alansary, et al. Evaluating reinforcement learning agents for anatomical landmark detection. Medical image analysis, 2019.

Experiments and Results

11

Dataset:	Visceral3	[1]
----------	-----------	-----

	Avg IoU	Wall dist [mm]	Centroid dist [mm]
Right Lung	0.77	3.46 ± 5.28	6.06 ± 10.25
Left Lung	0.73	4.91 ± 7.38	10.32 ± 17.09
Right Kidney	0.60	2.96 ± 2.91	5.69 ± 5.67
Left Kidney	0.57	4.06 ± 4.98	7.52 ± 9.02
Liver	0.80	2.41 ± 0.70	3.36 ± 1.34
Spleen	0.60	5.25 ± 7.23	9.20 ± 12.03
Pancreas	0.32	12.26 ± 13.60	20.79 ± 20.38
Global	0.63	5.04 ± 6.01	8.99 ± 10.82
Median	0.60	2.25	3.65



[1] Oscar Jimenez-del Toro, et al. Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: Visceral anatomy benchmarks, TMI.

Comparison to SOTA

${\bf Method}$		Organs						Time (s)	
	$\#\;{\rm Scans}$	L Lung	R Lung	L Kidney	R Kidney	Liver	Spleen	Pancreas	
RF (Criminisi et al., 2013)	400	12.90	10.10	13.60	16.10	15.70	15.50	-	4
RF (Gauriau et al., 2015)	130	-	-	5.50	5.60	10.70	7.90	-	3.2
RF (Samarakoon et al., 2017)	100	-	-	11.52	10.98	15.82	14.84	-	2.2
CNNs (Mamani et al., 2017)	553	2.87	2.60	5.68	5.82	8.19	7.17	-	-
CNNs (Humpire-Mamani et al., 2018)	1884	2.31	1.99	2.67	3.03	5.84	3.37	-	4.0
3D RCNN (Xu et al., 2019)	118	5.1	4.9	4.3	3.9	8.5	6.3	9.2	0.3
Ours (100% data) RL	70	4.91	3.46	4.06	2.96	2.41	5.25	12.26	3.1
Ours (10% data) RL	7	8.28	7.90	9.25	6.60	6.16	7.91	17.83	3.1

Visualizing the training

Liver beginning of training

Learn more about our research!

Check our MIDL papers:

Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting <u>https://openreview.net/forum?id=wthvY6Y9e</u>

Red-GAN: Attacking class imbalance via conditioned generation. Yet another medical imaging perspective https://openreview.net/forum?id=UHtZuvXHoA

Research in our group:

http://campar.in.tum.de/Chair/ResearchIBBM

