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Motivation
• Automatic anatomical localization is an integral part of an AI radiology framework.

• Anatomical localization has diverse applicability across multiple applications such as
image segmentation, registration, and classification.

• Deep reinforcement learning (RL) has emerged as the best technique for landmark
localization in recent years.

• Currently, the models developed using deep RL for landmark localization have been
limited to a single application.
• Example: Landmark localization within a predefined anatomical environment (e.g. brain MRI)

acquired using specific imaging parameters (e.g. T1-weighted MRI).



Multitask Modality Invariant Deep RL model
• We extend deep RL techniques and developed a multitask

deep RL model (MIDRL) with single and multiple agents.

• MIRDL: A single model for simultaneous localization of a
diverse set of landmarks across:

• Different regions in the body (e.g. heart, breast, prostate,
etc.)

• Different imaging parameters (e.g. T1-weighted imaging,
Dynamic contrast enhanced imaging, Diffusion Weighted
Imaging)

• Different imaging orientations (e.g. Axial, Sagittal, Coronal)



Reinforcement Learning (RL) Framework

• Environment: Radiological image

• Actions: move bounding box in one direction (±𝑥 or ±𝑦 or ±𝑧)

• State: Sequence of areas within the image (bounding box)

• Reward: change in Euclidean distance to landmark
• Positive if moved closer to landmark, negative if moved away 

• Clipped between -1 and 1

• Q-learning with experience replay



Reinforcement Learning Models 

• 2D MIDRL model
• Single agent

• Evaluated on individual 2D slices

• 3D MIDRL model
• Multi-agent (4 agents)

• Each agent locates its assigned 
landmark

• Evaluated on 3D whole body volumes

Reinforcement Learning Models 



2D DQN (single agent)

• Input: bounding box regions from last 4 time steps

• Output: Q-value for each action (x++, x--, y++, y--)



3D DQN
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• Input (for each agent): bounding box regions from last 4 time steps

• Output (for each agent): Q-value for each action (x++, x--, y++, y--, z++, z--)

• 3D DQN: analogous to 2D

• Convolutional layers are shared among all agents

• Each agent has its own separate final fully connected layers 

Input Output



Multiparametric MRI (mpMRI)



• 25 whole body mpMRI (2D and 3D) 

• 24 breast mpMRI (2D)

• 8 prostate mpMRI (2D)

Imaging 
Parameter

Heart Kidney Trochanter 
(pelvis)

Knee Nipple Prostate

T1WI ✔ ✔ ✔ ✔ ✔

T2WI ✔ ✔ ✔ ✔ ✔ ✔

Dixon in ✔ ✔ ✔ ✔

Dixon opp ✔ ✔ ✔ ✔

Dixon fat ✔ ✔ ✔ ✔

Dixon water ✔ ✔ ✔ ✔

Post DCE ✔

Pre DCE ✔

Sub DCE ✔

ADC ✔

Clinical Dataset



Nipple Prostate

Heart Kidney Trochanter Knee

Target bounding box: red

Agent’s bounding box: yellow

Multi-scale search

2D MIDRL model locating landmarks



3D MIDRL model locating landmarks

HeartKidney Trochanter Knee

Target bounding box: red

Agent’s bounding box: yellow

Multi-scale search
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Conclusion

• One model for locating multiple landmarks in many different imaging 
environments

• More computationally efficient than one model per environment
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