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Questions

* How much does the shared information help multi-sequence
reconstruction/recovery?

* How should one determine what sequence to undersample,
and by how much (“the undersampling strategy”)?

* Factors: sequence acquisition time, information entropy
(unigueness), measurement system




T1 VS FLAIR
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*School of Medicine, Case Western Reserve,
https://casemed.case.edu/clerkships/neurology/Web%20Neurorad/MRI%20Basics.htm
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Ways to find undersampling strategies

e Strategy 1: Same undersampling factors for all sequences.

e Strategy 2: Exhaustively search by training dedicated CNNs for
every possible undersampling strategies.

e Strategy 3: Base on the PSNR of observed undersampled MR-
sequences vs. the ground truth.




Blink Recovery Model

* We propose to use a guide RDN, called BRM, trained to recover

sequences from all possible undersampling strategies through
L1/L2 constraints.

* Assumption: PSNR measures recovery quality well

* PSNRs are calculated for recovered sequences of different
undersampling strategies.




BRM training

* The undersampling strategies are randomly rLAIR

S ts _
generated based on: 2 51 3> = Tinas ;

* t, is the time cost of fully sampling sequence s.

* A is the undersampling factor of sequence s. T tn
* T4y 1S the total time constraint.

* The undersampling process is done online.




Evaluation Dataset

 We acquired the k-space data of three sequences (T1, T2,
FLAIR) from 20 patients, in total 2880 three-sequence images.

* To expand on the dataset, we simulated k-space data from the
BraTS dataset and selected 167 scans, which are co-registered
in T1, T2, and FLAIR.

* Note that simulated k-space data is conjugate symmetric,
unlike real k-space measurements.
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Training Inference
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Figure 3: Quantitative evaluations for the top performing Aj.¢ under diflerent acquisition

time assumption. The performance numbers presented here are PSNR (dB) and
SH1M.




Conclusion

* Multi-sequence recovery achieves much better results than
individual sequence recovery

* BRMis

— 1. much faster than exhaustive search through training dedicated
CNNs;

— 2. much more reliable than zero-filled sequence PSNR;
— 3. adaptive to different sequence time costs
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