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Problem

• Problem : Build a predictive model for
diagnosing the presence of 14 observations
in chest X-rays.

• Proposed Approach : Given a training
set D =

{(
x(i), y(i)

)}
that contains N

chest X-rays ; each input image x(i) is
associated with label y(i) ∈ {0, 1}14. We
train a CNNθ that maps x(i) to a
prediction ŷ(i) such that the cross-entropy
loss function is minimized over the training
set D.

• Training and Evaluation : The model
was trained on CheXpert dataset (>235K
chest X-ray scans) and evaluated on 200
studies over 5 diseases : Atelectasis,
Cardiomegaly, Consolidation, Edema, and
Pleural Effusion using AUC metric.

Fig.1 : Building a CNN-based model to

predict the probability of 14 different

observations from chest X-rays.
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Exploiting disease dependencies and uncertainty labels

• Diagnoses or observations in chest X-ray are often conditioned upon their parent
labels. This should be leveraged during the model training and prediction.

• For example, each input image x(i) is associated with label y(i) ∈ {0, 1}14 where y(i)

can be represented via a tree T ; y(i) = 1 → y(i)
parent = 1 for any non-root node i ∈ T .

• A CNN was pretrained on a partial training set containing all positive parent labels
(conditional training), then retrained it on the full dataset (transfer learning).

Fig.2 : A CNN was trained on a training set where all parent labels (red nodes) are positive, to
classify leaf labels (blue nodes). For example, we train a CNN to classify Edema, Atelectasis, and
Pneumonia on training examples where both Lung Opacity and Consolidation are positive.
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Leveraging uncertainty in CXRs with label smoothing

• The chest X-ray labeler heavily depends on expert systems (i.e. using keyword
matching with hard-coded rules), which left many chest X-ray images with uncertainty
labels → we may not have full access to the true labels.

• Several policies have been proposed in to deal with these uncertain samples, e.g.
they can be all ignored (U-Ignore), all mapped to positive (U-Ones), or all mapped to
negative (U-Zeros).

• We propose the U-ones+LSR policy that maps the original label y (i)
k to

ȳ (i)
k =

{
u, if y (i)

k = −1
y (i)

k , otherwise,
(1)

where u ∼ U(a1, b1) is a uniformly distributed random variable between a1 and b1
that close to 1.

• Similarly, we propose the U-zeros+LSR policy that softens the U-zeros by setting
each uncertainty label to a random number u ∼ U(a0, b0) that is closed to 0.
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Experimental results

We trained a strong set of six CNN models. Its ensemble model achieved an average
AUC of 0.940, which set a new state-of-the-art result on CheXpert validation set and
ranks first on the leaderboard of the CheXpert competition.

Table 1 – Performance comparison using AUC metric with the state-of-the-art
approaches on the CheXpert dataset. The highest AUC scores are boldfaced.

Method Atelectasis Cardiomegaly Consolidation Edema P. Effusion Mean

Ignore-LP 0.720 0.870 0.770 0.870 0.900 0.826
Ignore-BR 0.720 0.880 0.770 0.870 0.900 0.828
Ignore-CC 0.700 0.870 0.740 0.860 0.900 0.814
Ignore 0.818 0.828 0.938 0.934 0.928 0.889
U-Zeros 0.811 0.840 0.932 0.929 0.931 0.888
U-Ones 0.858 0.832 0.899 0.941 0.934 0.893
U-MultiClass 0.821 0.854 0.937 0.928 0.936 0.895
U-SelfTrained 0.833 0.831 0.939 0.935 0.932 0.894
Ours 0.909 0.910 0.957 0.958 0.964 0.940
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