

Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting

Carolin M. Pirkl^{*1,2}, Pedro A. Gómez^{*1}, Ilona Lipp^{3,4,5}, Guido Buonincontri^{6,7}, Miguel Molina-Romero¹, Anjany Sekuboyina^{1,8}, Diana Waldmannstetter¹, Jonathan Dannenberg^{2,9}, Sebastian Endt^{1,2}, Alberto Merola^{3,5}, Joseph R. Whittaker^{3,10}, Valentina Tomassini^{3,4,11}, Michela Tosetti^{6,7}, Derek K. Jones^{3,12}, Bjoern H. Menze^{+1,13,14}, Marion I. Menzel^{+2,9}

¹Department of Informatics, Technical University of Munich, Garching, Germany

²GE Healthcare, Munich, Germany

³Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University School of Psychology, Cardiff, United Kingdom ⁴Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom

⁵Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany

⁶Fondazione Imago7, Pisa, Italy

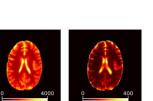
⁷IRCCS Fondazione Stella Maris, Pisa, Italy

⁸Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany

⁹Department of Physics, Technical University of Munich, Garching, Germany

¹⁰Cardiff University School of Physics and Astronomy, Cardiff, United Kingdom

¹¹Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, School of Medicine, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy

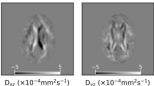

¹²Mary McKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia

¹³Center for Translational Cancer Research, Munich, Germany

¹⁴Munich School of BioEngineering, Garching, Germany

MR Fingerprinting (MRF) Ma et al. *Nature* (2013)

Jiang et al. Magn Reson Med (2015)


T2 (ms)

T1 (ms)

D_{xy} (×10⁻⁴mm²s⁻¹)

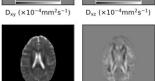
 $D^{-4}mm^2s^{-1}$ $D_{yy} (\times 10^{-3}mm^2s^{-1})$

²s⁻¹) D_{yz} (×10⁻⁴mm²s⁻¹)

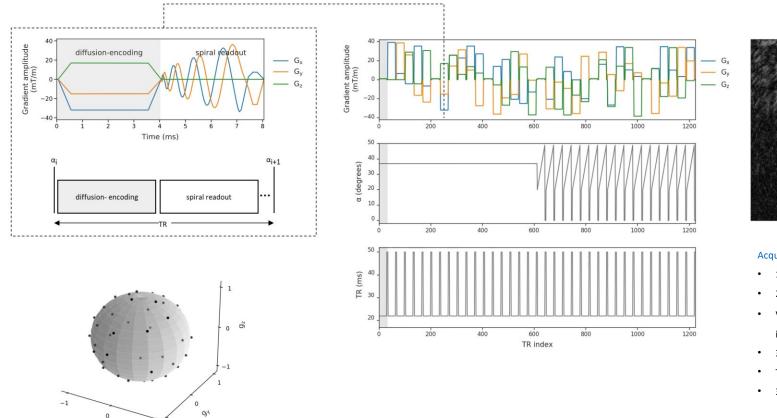
D_{zz} (×10⁻³mm²s⁻¹)

Deep learning-based parameter mapping for joint relaxation

and diffusion tensor MR Fingerprinting


Pirkl, Gómez et al. MIDL (2020)

Diffusion-weighted MRF


Jiang et al. *ISMRM* (2014, 2016, 2017) Cohen et al. *ISMRM* (2018) Rieger et al. *ISMRM* (2018)


D_{xx} (×10⁻³mm²s⁻¹)

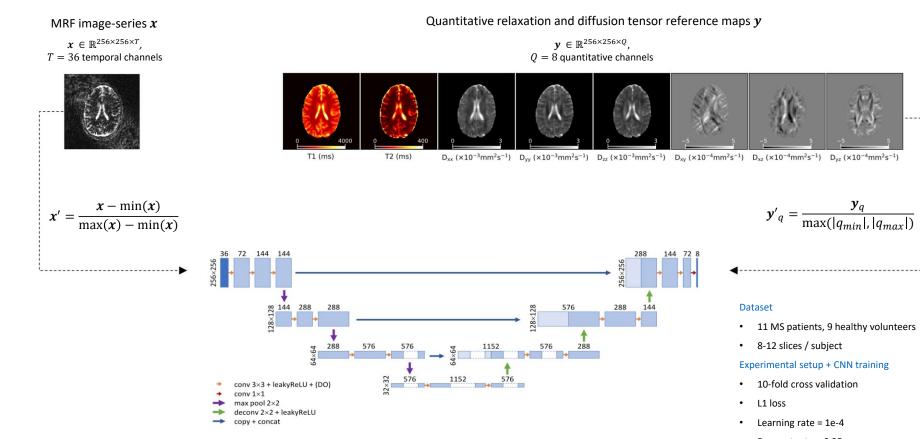
Methods | Diffusion-sensitized MRF sequence

Acquisition parameters

- 1.2×1.2×5 mm³ resolution
- 22.5×22.5 cm² FOV
- Variable density spiral sampling (34 interleaves)
- 30 diffusion encoding directions
- TI = 18ms, TE = 6ms
- 32s / slice acquisition time

Sliding window reconstruction

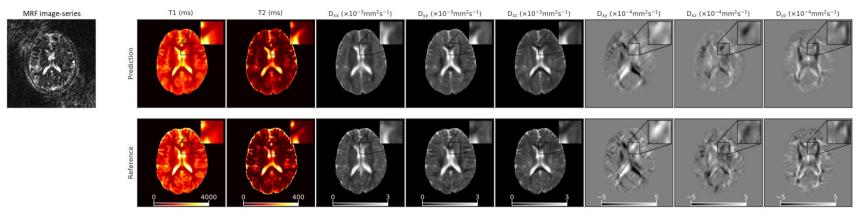
- Window size = 34
- Window stride = 34


McNab & Miller NMR Biomed (2010), Bieri et al. Magn Reson Med (2012), Gómez et al. ISMRM (2017)

-1

1

 g_{x}

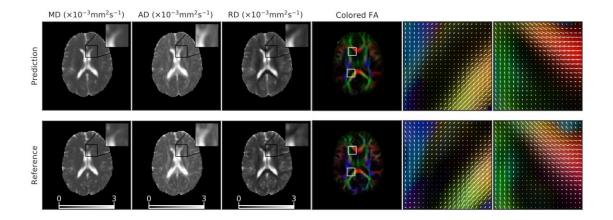

Methods | CNN-based parameter mapping

- Dropout rate = 0.25
- Batch size = 5
- 400 epochs

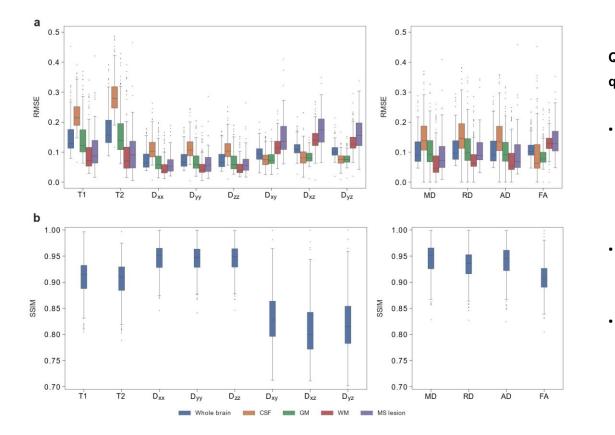
Ronneberger et al. MICCAI (2015), Deoni. JMRI (2007), Deoni et al. Magn Reson Med (2003)

Results | Qualitative evaluation

Relaxation and diffusion tensor maps


- High consistency between CNN prediction and state-of-the-art reference
- CNN reliably reconstructs relaxation and orientational diffusion information

Scalar diffusion metrics


Good agreement with EPI-DTI reference

Colored FA maps + primary diffusion eigenvectors

Characteristic fiber structure in WM is captured

Results | Quantitative evaluation

Quantitative evaluation substantiates qualitative findings

- Reliably reconstruction of relaxation and orientational diffusion information, also in regions of diagnostic importance (MS lesions)
 → Generalization capability
- Comparable reconstruction performance for T1 and T2 with respect to DESPOT1/2 methods

Better agreement with EPI-DTI reference for diagonal diffusion tensor elements (D_{xx}, D_{yy}, D_{zz}) than off-diagonal elements (D_{xy}, D_{xz}, D_{yz})

Discussion and outlook

Relaxation and diffusion-sensitized MRF sequence

Thank you!

- ✓ Relax MR acquisition requirements
- ✓ Efficiently encode:
 - T1 and T2 relaxation times
 - Orientational diffusion information
- ✓ Bypass conventional dictionary matching

Outlook: Improve on our baseline

- More advanced deep learning approaches
- More efficient, motion-robust diffusion
 encoding scheme

Major challenge: Severe head motion

- $\rightarrow\,$ Prospective and retrospective motion
 - correction approaches
- \rightarrow Increase motion robustness of sequence
 - design