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Motivation

Cancer and Tissue Imaging

∙ Cancer is a heterogeneous disease, with complex micro-environments where
lymphocytes, stromal, and cancer cells interact with the tissue and blood vessels.

∙ Although the genomic and transcriptomic diversity in tumors is quite high,
phenotype between/within tumor such as cellular behaviours and tumor
micro-environments remains poorly understood.

Why generative models?

∙ Limitation of supervised learning: Expensiveness of data collection and labeling, it
cannot provide unknown information about the data.

∙ A generative model can to identify and reproduce the different types of tissue.
∙ Disentangled representations can provide further understanding on phenotype
diversity between and within tumors.
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Model

We start with BigGAN and Relativistic Average Discriminator.

Loss function: The discriminator, and generator loss function are formulated as in
Equations 2 and 3, where ℙ is the distribution of real data, ℚ is the distribution for the
fake data, and 𝐶(𝑥) is the non-transformed discriminator output or critic:

𝐿𝐷𝑖𝑠 = −𝔼𝑥𝑟∼ℙ [log (�̃� (𝑥𝑟))] − 𝔼𝑥𝑓∼ℚ [log (1 − �̃� (𝑥𝑓))] , (1)

𝐿𝐺𝑒𝑛 = −𝔼𝑥𝑓∼ℚ [log (�̃� (𝑥𝑓))] − 𝔼𝑥𝑟∼ℙ [log (1 − �̃� (𝑥𝑟))] , (2)

�̃� (𝑥𝑟) = sigmoid (𝐶 (𝑥𝑟) − 𝔼𝑥𝑓∼ℚ𝐶 (𝑥𝑓))),
�̃� (𝑥𝑓) = sigmoid (𝐶 (𝑥𝑓) − 𝔼𝑥𝑟∼ℙ𝐶 (𝑥𝑟)) .

Figure 1: Starting point: BigGAN with Relativistic Average Discriminator.
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Model

High quality tissue image generation.

Limitation: No interpretability or structure in the latent space.

Figure 2: (a): Images (224 × 224, 448 × 448) from PathologyGAN trained on H&E breast cancer tissue.
(b): Real images, Inception-V1 closest neighbor to the generated above.
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Model

Motivation: Can we modify or introduce changes so we have an ordered latent space
based on cancer tissue characteristics?

We introduce two features from StyleGAN [1]:
∙ Mapping Network [𝑤 ∼ 𝑀(𝑧)]:
∙ Neural network that allows to freely optimize the latent space to disentangle high level
features in the tissue.

∙ Style Mixing Regularization:
∙ To further enforce localize tissue characteristics in the latent space, we use two different
latent vectors (𝑧1, 𝑧2) to generate a single image.

∙ We can do this since the latent vector is feed at every level of the generator, we randomly
choose a layer in the generator and feed each different latent vector to each half.

Figure 3: PathologyGAN high level representation
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Results - Image Quality

Fréchet Distance: Wasserstein distance between two Gaussians:

We want to measure differences between real and generated tissue distributions.

FID = ∥𝜇𝑟 − 𝜇𝑔∥2 + Tr (Σ𝑟 + Σ𝑔 − 2 (Σ𝑟Σ𝑔)1/2) ;
where 𝑋𝑟 ∼ 𝒩 (𝜇𝑟, Σ𝑟) and 𝑋𝑔 ∼ 𝒩 (𝜇𝑔, Σ𝑔)

1. Convolutional Features from an pretrained Inception-V1: Fréchet Inception Distance
(FID).

2. Cancer tissue characteristics as cancer, lymphocyte, stroma cells count and density:
We use an external tool, CRImage, based on SVM to quantify these in the tissue
image.
∙ Each image is quantified into a vector: (# cancer cells, # lymph. and stroma, cancer cell
density)

Figure 4: CRImage identifies different cell types in our generated images. Cancer cells are
highlighted with a green color, while lymphocytes and stromal cells are highlighted in yellow.
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Results - Image Quality

As a reference, values are similar to ImageNet models of BigGAN [2] and SAGAN [3],
with FIDs of 7.4 and 18.65 respectively or StyleGAN [1] trained on FFHQ with FID of 4.40:

Model Inception FID CRImage FID

PathologyGAN 16.65±2.5 9.86±0.4

Table 1: Evaluation of PathologyGANs. Mean and standard deviations are computed over three
different random initializations. The low FID scores in both feature space suggest consistent and
accurate representations.
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Results - Patholigists’ Interpretation

Pathologists’ interpretation:

Motivation: Test if experts that work with tissue images find artifacts that give away
generated tissue.

1. Test I: 25 Sets of 8 images - Pathologists were asked to find the only fake image in
each set.

2. Test II: 50 Individual images - Pathologists were asked to rate all individual images
from 1 to 5, where 5 meant the image appeared the most real.

Figure 5: Example of Test I.

Figure 6: Examples of Test II. 7



Results - Patholigists’ Interpretation

Pathologists’ interpretation:

1. Test I: Pathologist 1 and 2 were able to find only 2/25 sets and 3/25 fake images.
2. Test II: Figure 7 - The near random classification performance from both expert
pathologists suggests that generated tissue images do not present artifacts that
give away the tissue as generated.

Figure 7: ROC curve of Pathologists’ classification for tissue images.
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Results - Representation Learning

Do we have any kind of structure in the latent space?

1. We generated 10, 000 tissue images, each of them with its associated latent vector
𝑤 ∈ ℝ200

2. For each tissue image, we run CRImage to get the count of cancer cells in the tissue.
3. We created 9 different buckets for cancer cell counts. Class 0 accounts for images
with the lowest count cancer cells, on the other extreme Class 8 accounts for
images with the largest counts.

4. We run UMAP[4] to perform dimensionality reduction from 200 dimensions to 2
dimensions over the complete 10, 000 𝑤 lantent vectors.

Figure 8: Preprocessing of data for latent space interpreztation.
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Pathologygan - Representation Learning Properties

Difference between PathologyGAN’s and BigGAN’s latent space:

∙ (a) PathologyGAN shows structure in the latent space 𝑤 making the image
generation interpretable, increasing counts in cancer cells correspond to moving
the selected vector from quadrant 𝐼𝑉 to quadrant 𝐼𝐼

∙ (b) Vector samples are randomly placed in the BigGAN’s latent space 𝑤.

Figure 9: Contrast between PathologyGAN’s latent space (a) and BigGAN’s (b).
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Results - Representation Learning

Figure 10: Scatter plots with 𝑤 latent vectors on PathologyGAN’s latent space. Each sub-figure
shows datapoints only related to one of the classes, and each class is subject to the count of
cancer cells in the tissue image, (a) [class 0] are associated to images with the lowest number of
cancer cells, (h) [class 8] with the largest.
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Results - Representation Learning

Figure 11: Density plots with 𝑤 latent vectors on PathologyGAN’s latent space. Each sub-figure
shows datapoints only related to one of the classes, and each class is subject to the count of
cancer cells in the tissue image, (a) [class 0] are associated to images with the lowest number of
cancer cells, (h) [class 8] with the largest.
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Results - Representation Learning

Linear interpolation:

∙ We captured two latent vectors 𝑧 with associated tissue: benign (less cancer cells,
leǒt end) and malignant tissue (more cancer cells, right end).

∙ We performed a linear interpolation of 8 stages between these two vectors and fed
the generator.

Conclusions:

∙ PathologyGAN (a) includes an increasing population of cancer cells rather than a
fading effect from BigGAN (b).

∙ PathologyGAN (a) better translates high level features of the images from the latent
space vectors.

Figure 12: (a) PathologyGAN model. (b) BigGAN model. 13



Results - Representation Learning

Vector Operations:

1. We gather latent vectors 𝑧 that generate images with different high level features:
Benign tissue, lymphocytes, stroma, and tumorous tissue.

2. We performed different linear vector operations before we fed the generator.

Conclusions:

1. The resulting images hold the feature transformations implied in the vector
operations.

Figure 13: Examples of vector operations.
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Thanks

Thank you for checking out our work!
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