Deep learning-based retinal vessel segmentation with cross-modal evaluation

Luisa Sanchez Brea¹ Danilo Andrade De Jesus¹ Stefan Klein¹ Theo van Walsum¹

¹Biomedical Imaging Group Rotterdam, Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands

Clinical context

Why is it relevant to segment the retinal vessel tree?

Scanning laser ophthalmoscopy (SLO)

Pathologies: hypertensive retinopathy, diabetic retinopathy

Biomarkers: vascular wall changes, arteriolar constriction, arterio venous nicking, changes in tortuosity

Assist the clinician providing **automatic**, **quantitative**, and **repeatable** measurements

State of the art

State of the art

Erasmus MC

Motivation

Fundus photography is older, larger **datasets** and more **annotations** available

Scanning laser opthtalmoscopy is less used, not many **annotated datasets**

Several approaches proposed on fundus photography vessel segmentation

<u>Goal:</u> propose guidelines on parameters and architectures for vessel segmentation

Variety of techniques, both specific and general-purpose networks Wide variety of **architectures** and **parameters** makes comparison difficult

Barely any work on vessel segmentation in scanning laser ophthalmoscopy

Define architecture based on literature review

Motivation

Fundus photography is older, larger **datasets** and more **annotations** available

Scanning laser opthtalmoscopy is less used, not many **annotated datasets**

Several approaches proposed on fundus photography vessel segmentation

<u>Goal:</u> propose guidelines on parameters and architectures for vessel segmentation

Variety of techniques, both specific and general-purpose networks Wide variety of **architectures** and **parameters** makes

<u>Goal:</u> study if training on one modality is transferrable to the other

Barely any work on vessel segmentation in scanning laser ophthalmoscopy

2 alm

Methods

Erasmus MC Zafung

Erasmus MC Calug

Erasmus MC

zalus

Conclusions

A state-of-art CNN is able to obtain results comparable to previous approaches from the literature

Sensitivity, specificity, and accuracy ~90% for all but one of the individual datasets

A model trained on fundus photography is able to segment scanning laser ophthalmoscopy accurately

Sensitivity, specificity, and accuracy ~90% for the model trained on fundus photography and tested on scanning laser opthtalmoscopy A model trained on scanning laser ophthalmoscopy has a significant drop in sensitivity when segmenting fundus photography

Sensitivity below 50% for the model trained on scanning laser ophthalmoscopy tested on fundus photography

Thank you!

m.sanchezbrea@erasmusmc.nl

Erasmus MC University Medical Center Rotterdam