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How far can we push linear decision boundaries?
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Decision boundaries in low/high dimensions

Kernelizing to higher dimensions (SVMs)

Non-linear decisions in lower dimensions (NNs)

Tensor networks

Linear decision boundaries in exponentially high dimensional spaces.
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One slide introduction to tensor notation
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Linear model in high dimensions: Feature Maps

Consider input image with N pixels, flattened as a vector x ∈ [0, 1]N

Φi1,i2,...iN (x) = φi1(x1)⊗ φi2(x2)⊗ · · ·φiN (xN) (1)

φij (·) is d-dimensional local feature map acting on pixel xj :

φij (xj) = [cos(
π

2
xj), sin(

π

2
xj)]. (2)

High dimensional feature maps

Dimensionality of the joint feature map Φ(x) is dN due to tensor products i.e,
an order N tensor
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Linear model in high dimensions: Decision Rule

Decision rule for a multi-class classification task:

f (x) = arg max
m

f m(x), (3)

where m = [0, 1, . . .M − 1] are the M classes,

f m(x) = Wm · Φ(x). (4)

W has M · dN tunable weights

With a gray scale image of size 100× 100 as input and d = 2
W has 2 · 210000 ≈ 103010 parameters.
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Approximate tensor dot product with MPS

Matrix Product State (MPS) is a type of Tensor Network

Factorisation of order N tensor into chain of order 3 tensors

Reduces computation complexity from dN to N · β3 · d (linear in N)
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Tensor Networks for Medical Images

MPS is defined for 1-d inputs

2-d images are flattened in existing literature

Loss of spatial structure

Flattening discards useful information in medical images

Proposed idea
Flatten small regions assuming local orderlessness.
Aggregate at multiple resolutions.
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Locally orderless Tensor Network: LoTeNet

Extending Tensor Networks to medical images

1. Partition image into small patches

2. Squeeze patches to retain spatial information

3. Perform MPS contraction at patch level

4. Aggregate and perform squeeze + MPS at next resolution

5. Output decision boundary
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LoTeNet: Partition and Squeeze

Squeeze operation with stride k = 2. A 4× 4× 1 image patch is reshaped into 2× 2× 4

stack which then yields a vector of size 4 with feature dimension d=4.
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LoTeNet: Partition and Squeeze
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Squeeze operation with stride k = 2. A 4× 4× 1 image patch is reshaped into 2× 2× 4

stack which then yields a vector of size 4 with feature dimension d=4.
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LoTeNet: Patch level MPS

Squeeze operation with stride k = 2. A 4× 4× 1 image patch is reshaped into 2× 2× 4

stack which then yields a vector of size 4 with feature dimension d=4.
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LoTeNet: The Final Model

Optimized using backpropagation.
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Model Evaluation: PCam Dataset

The PatchCamelyon (PCam) dataset

Binary classification

Positive label indicates ≥ One pixel with tumour

Image patches of size 96× 96 px

220k patches for training-validation (80 : 20)

57.5k test patches
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Model Evaluation: LIDC Dataset

128× 128 px image patches

15k patches. 60 : 20 : 20 splits for training/validation/test

Annotated by 4 radiologists. Originally a segmentation dataset
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Model Evaluation: Results
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Conclusion

+ Fully linear decision boundary

+ Single model hyperparameter (β)

+ Squeeze operation helps retain structure

+ LoTeNet performs competitively

+ Massive reduction in GPU utilization

- Tendency to overfit

- Not optimized for efficiency, yet
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Summary

Proposed LoTeNet for medical image classification

Different paradigm compared to feed-forward NNs or CNNs

Low GPU memory requirement (< 10%)

New and exciting applications are to be expected
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Questions

Thanks to Jacob Miller for TorchMPS 1

Model and data are available here:
https://github.com/raghavian/lotenet_pytorch

raghav@di.ku.dk

1https://github.com/jemisjoky/TorchMPS
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