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Introduction to Histopathology Imaging
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Digitized Histopathology Sections Are Huuge
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Problem Statement

* Task: classify patients based on histopathology imaging
* Input: gigapixel RGB image
*  Output: patient label (survival, recurrence, response, -omics, biomarkers, etc.)

Neural
» Prediction

Network

200 000 px

100 000 px
* Constraints:
* Single-GPU during training and testing
* No pixel-level task associated with patient label
* Limited number of patients (<1000 images)
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Prior Work

Pixel annotations Multiple Instance Learning Reinforcement learning
Requires proxy task Does not exploit relations Unstable training
Requires annotations among instances Unexplored areas
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Image credits: camelyon16.grand-challenge.org
Qaiser, Talha, et al. "Learning where to see: A novel attention model for automated immunohistochemical scoring." TMI 2019.
Pinckaers, Hans, et al. "Streaming convolutional neural networks for end-to-end learning with multi-megapixel images." Arxiv 2019.
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Proposed: Neural Image Compression

Solve pixel-level
vision
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Previous Work: Unsupervised Encoder
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Tellez, David, et al. "Neural Image Compression for Gigapixel Histopathology Image Analysis." TPAMI 2019.
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Proposal: Supervised Encoder ?J w
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Supervised Multi-Task Learning
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Neural Image Compression with Multi-Task Encoder
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Experimental Results on TUPAC [l
T Classifier Prediction
Tumor Proliferation Assessment
TUPAC16 | MICCAI Grand Challenge
° Breast tissue PAMS50 Tumor Profiling Test
* 500 training images
*  Label: speed of tumor proliferation from molecular profiling (float [-1, +1])
*  Additional: 300 test images with labels known by organizers only
Image credits: tupac.tue-image.nl
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Experimental Results on TUPAC

Method Training set External test set

NIC unsupervised (Tellez et al., 2019) 0.522 0.558 [0.5191, 0.5962]
Streaming CNNs (Pinckaers et al., 2019) | - 0.570

TUPACI16 winner (Veta et al., 2019) - 0.617

NIC multitask (proposed) 0.620 0.632 [0.5966, 0.6641]

Predicting tumor proliferation speed

Main results:
*  State-of-the-art result and first place in challenge leaderboard

Spearman Correlation
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Performance on TUPAC vs number of tasks

2 3 4
Number of tasks in multitask training

*  Validates the use of supervised multitask learning for gigapixel image-level prediction

. Performance increases with the number of tasks used to train the encoder
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* Liver metastasis of colon cancer

* 1500 training images

* Label 1: type of growth pattern (binary classification)
* Label 2: patient outcome (overall survival)

Image credit:
Zarour, Luai, et al. "Colorectal cancer liver metastasis: evolving paradigms and future directions." Cellular and molecular gastroenterology and hepatology 2017.
Hoéppener, Diederik, et al. "Enrichment of the tumour immune microenvironment in patients with desmoplastic colorectal liver metastasis." British Journal of Cancer 2020.
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Experimental Results on Liver (growth)
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Receiver operating characteristic
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Main results:

Validates the use of supervised multitask learning for
gigapixel image-level prediction

Heavy color augmentation improves performance
Supervision with 1 task is similar to unsupervised
Multitask supervision provided the best result
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Experimental Results on Liver (survival)
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*  The proposed method can learn directly from patient outcome data (without human annotations)
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Take-Home Messages ‘QJ»
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Multi-task learning improves Predicts patient risk using
patient-level classification

(even unseen organs)

outcome label data
(biomarker discovery)
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