KNEE INJURY DETECTION USING MRI WITH EFFICIENTLY LAYERED NETWORK (ELNET)

Chen-Han Tsai, Nahum Kiryati, Eli Konen, Iris Eshed, Arnaldo Mayer

PROBLEM MOTIVATION

CONVENTIONAL KNEE EXAMS

MRI Acquisition

	Queue	Patient ID	Age 🗓	Pathology .	Exam Date
	1	13059684	49	ACL	June-3-2019 - 10:14:05
	2	23615409	25	Meniscus	June-3-2019 - 10:48:21
	3	32156089	36	Meniscus	June-3-2019 - 11:23:31
_	4	21410238	42	Osteoarthritis	June-3-2019 - 11:44:52
7	5	14796243	46	Effusion	June-3-2019 - 12:21:13
	6	61325967	52	ACL	June-3-2019 - 12:46:01
	7	32651489	61	ACL	June-4-2019 - 10:12:07
	8	62354782	23	PCL	June-4-2019 - 10:47:09
	9	25614503	35	Fracture	June-4-2019 - 11:20:21
	7	32651489 62354782	61 23	ACL PCL	June-4-2019 - 10:12:07 June-4-2019 - 10:47:09

Exam added to Queue

Final Assessment

- MSK radiologists face a rising work demand each day
- Triage improves efficiency by prioritization
- Severe cases prioritized first

PROBLEM MOTIVATION

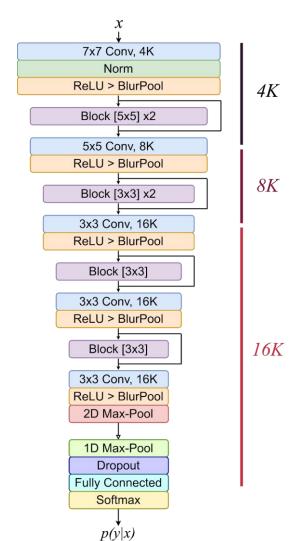
Level of Severity

TRIAGED KNEE EXAMINATIONS



- MSK radiologists face a rising work demand each day
- Triage improves efficiency by prioritization
- Severe cases prioritized first

ELNET ARCHITECTURE



Output Size	Layer Operation	Trainable Parameters		
$s \times 4K \times 128 \times 128$	$7 \times 7 \text{ Conv}, 4K$	196K		
$S \times 4N \times 120 \times 120$	Normalization	4K		
$s \times 4K \times 62 \times 62$	$ReLU \rightarrow BlurPool$			
$s \times 4N \times 02 \times 02$	Block $[5 \times 5] \times 2$	$800K^2 + 16K$		
$s \times 8K \times 62 \times 62$	5×5 Conv, $8K$	$800K^{2}$		
$s \times 8K \times 29 \times 29$	$ReLU \rightarrow BlurPool$			
$s \times \delta N \times 29 \times 29$	Block $[3 \times 3] \times 2$	$1152K^2 + 32K$		
$s \times 16K \times 29 \times 29$	3×3 Conv, $16K$	$1152K^{2}$		
	$ReLU \rightarrow BlurPool$			
$s\times 16K\times 13\times 13$	Block [3×3]	$2304K^2 + 32K$		
	3×3 Conv, $16K$	$2304K^{2}$		
	$ReLU \rightarrow BlurPool$			
$s\times 16K\times 5\times 5$	Block [3×3]	$2304K^2 + 32K$		
	3×3 Conv, $16K$	$2304K^{2}$		
$s \times 16K$	$ReLU \rightarrow BlurPool \rightarrow 2D Max-Pool$			
16K	$1D \text{ Max-Pool} \rightarrow Dropout$			
2	Fully Connected \rightarrow Softmax	32K + 2		
	Total Trainable Parameters	$13120K^2 + 348K + 2$		

Fig-1: Illustration and configuration of ELNet.

ELNET CORE COMPONENTS

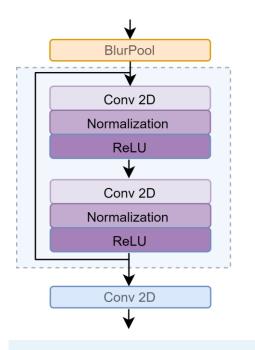


Fig-2: Block with 2 repeats

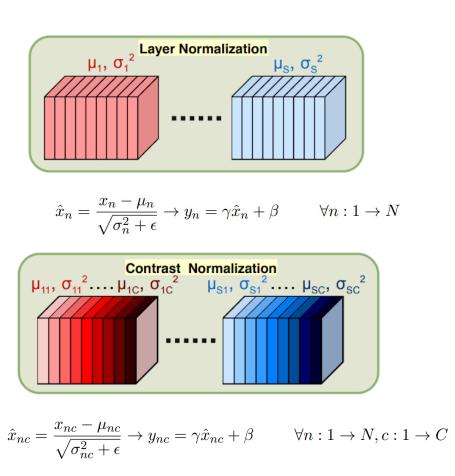


Fig-3: Multi-slice Normalization for 3D Inputs

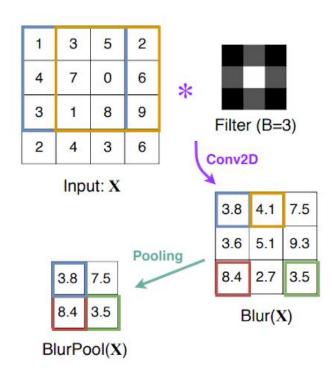
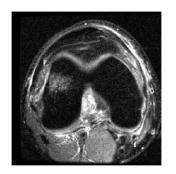


Fig-4: BlurPool Down-sampling

EVALUATION DATASETS

- MRNet Dataset¹
 - 1370 knee MRI exams*
 - Labels : ACL tear / Meniscus tear / Abnormalities
 - Axial, coronal, and sagittal scans provided
- KneeMRI Dataset²
 - 917 knee MRI exams**
 - Labels: ACL Injured
 - Sagittal scan provided



Coronal Plane

Sagittal Plane

ELNET SETUP

Detection Objective	Multi-Slice Norm	Image Modality	K	Number of Parameters
Meniscus Tear	Contrast Norm	Coronal	4	~ 0.2 M (850 kB)
ACL Tear	Layer Norm	Axial	4	-
Abnormalities	Layer Norm	Axial	4	-
ACL Tear (KneeMRI)	Contrast Norm	Sagittal	2	~ 0.05 M (438 kB)

- ELNet is trained from scratch
- Previous SOTA MRNet ~183M parameters for each objective

MRNET EVALUATION

Architecture	Pathology	Accuracy	Sensitivity	Specificity	ROC-AUC	MCC
	Meniscus Tear	0.735	0.827	0.662	0.826	0.489
MRNet	ACL Tear	0.9	0.907	0.894	0.956	0.769
	Abnormality	0.883	0.947	0.64	0.936	0.628
	Meniscus Tear	0.88	0.86	0.89	0.904	0.745
ELNet	ACL Tear	0.904	0.923	0.891	0.960	0.815
	Abnormality	0.917	0.968	0.72	0.941	0.736

Fig-5: Evaluation of ELNet and MRNet performance on the MRNet Dataset

KNEEMRI EVALUATION

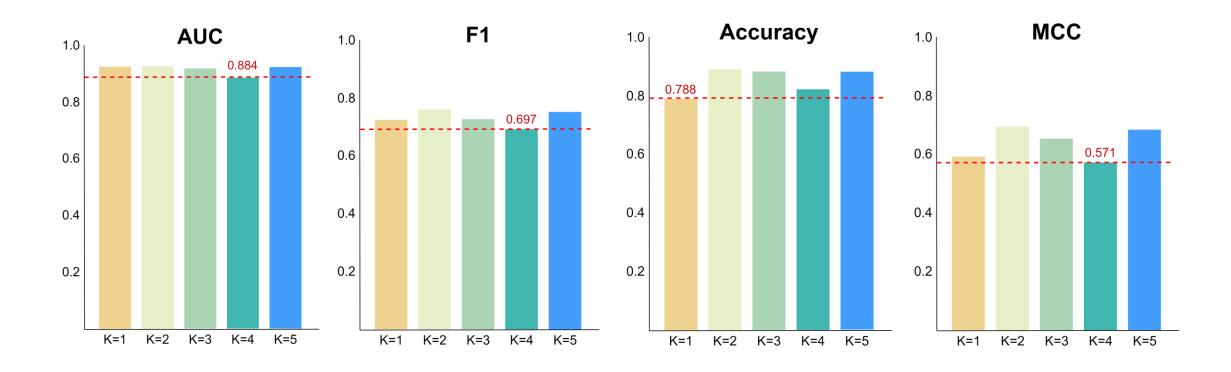


Fig-6: Comparison of ELNet performance across all 5 folds on the KneeMRI dataset

KNEEMRI EVALUATION

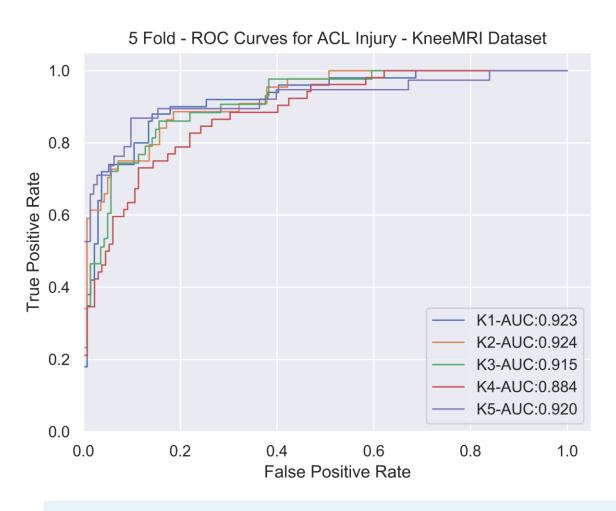


Fig-7: ROC's of ELNet of KneeMRI Dataset across 5 folds

MODEL INTERPRETATION

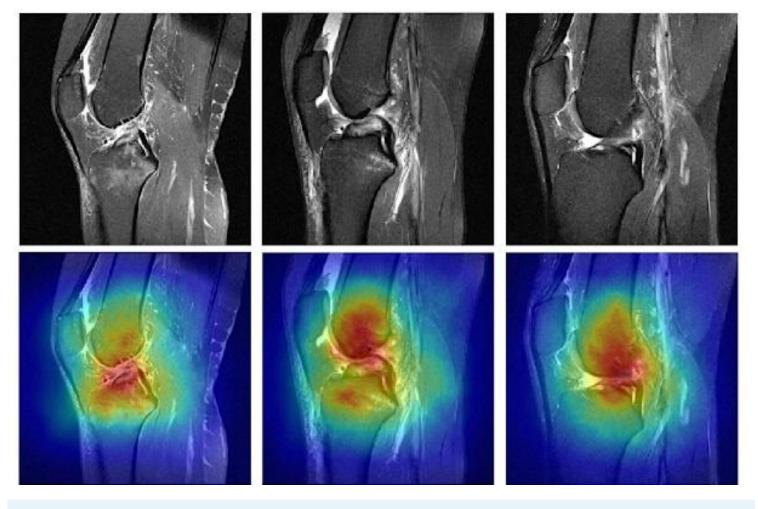


Fig-8: Full-Grad visualization highlighting the tear locations in the knee

SUMMARY

- ELNet features
 - Lightweight
 - Adequate performance
 - Easily trained from scratch
- May be applied to other pathologies involving 3D images (MRI, CT, etc.)