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Introduction o CTION GO

- There are 5 major histological subtypes of epithelial ovarian cancer: HGSOC,
CCOC, ENOC, LGSOC and MUC.

- These five major histotypes have distinct morphological, molecular, genetic,
and clinical features.

- Problem: without gynecologic pathology-specific training, which reflects most
current pathology practices, inter-observer agreement in diagnosing these
histotypes is moderate, with Cohen’s kappa varying between 0.54 and 0.67.

- Clinical need: methods to improve ovarian cancer histotype classification
based on pathology slide images are needed.
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- 305 whole slide images (WSI) composed of 157 HGSOC, 53 CCOC, 55 ENOC, 29
LGSOC, and 11 MUC were collected from the Vancouver General Hospital.

— The histological subtypes were determined by molecular assays and
reviewed by several pathologists.

- Representative areas of tumor in each WSI were annotated by a
board-certified pathologist.
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Figure 1: Proposed WSI classification workflow.
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Figure 2: Proposed two-stage patch-level deep transfer learning workflow
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Mean Per-Class Accuracy Overall

Classifier HGSOC ccoc ENOC LGSOC MUC Accuracy Kappa AUC F1 Score
Baseline 1 Patch-Level 67.15% 90.44% 62.79% 71.00% 5596% 69.83% 0.5992 0.9120 0.6850
Baseline 2 Patch-Level 62.76% 81.10% 59.51% 5234% 5331% 62.63% 0.5024 0.8410 0.6184
Stage 1 Patch-Level — 74.94% 84.04% 67.89% 6181% 5998% 71.75% 0.6187 0.9035 0.6984
Stage 2 Patch-Level  71.67% 88.77% 62.68% 6841% 60.71% 71.60% 0.6179 0.8890 0.7047
Baseline 1 Slide-Level 80.25% 83.02% 5455% 6552% 5455% 73.77% 05993 0.9391 0.6855
Baseline 2 Slide-Level 80.13% 75.47% 3455% 6897% 5455% 69.08% 0.5224 0.8481 0.6479
Stage 1 Slide-Level 8599% 79.25% 61.82% 7931% 5455% 7869% 0.6730 09375 0.7414
Stage 2 Slide-Level 90.45% 86.79% 74.55% 100.0% 81.82% 87.54% 0.8106 0.9641 0.8718

Table 1: Patch- and slide-level performance measured by various metrics in

cross-validation.



