Domain adaptation model for retinopathy detection from cross-domain OCT images

Jing Wang^{1;2}, Yiwei Chen², Wanyue Li1;², Wen Kong^{1;2}, Yi He², Chuihui Jiang^{*3}, Guohua Shi^{*2;4}

- ¹ University of Science and technology of China, Hefei 230026, China
- ² Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and
- Tech-nology, Chinese Academy of Sciences, Suzhou 215263, China
- ³ Department of ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University,
- Shanghai 200031, People's Republic of China
- ⁴ Center for Excellence in Brain Science and Intelligence Technology, CAS

Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences

Motivation

- Classifier trained from one domain images perform badly on new domain images
- Images captured from different devices have different signal distribution
- Deep models' performance declines when the test data are under a different distribution compared to the training data.
- Labels of medical images are difficult to acquire.

Target Image (without label)

Overview

• Extracting the domain invariant and discriminative features to train the classifier.

Target Image (without label)

Network architecture

- An adversarial model was proposed to learn the domain invariant feature.
- A Wasserstein estimator and an domain discriminator were combined to train the model

Result- classification across domain

Table 1: Evaluation results (accuracy %) of several domain adaptation models on target datasets. (The evaluation results on the source dataset is reported in parentheses)

Method	MNIST -> USPS	Ciruss -> Spectralis	
Source only	0.9612(0.9939)	0.8669(0.947)	
WDGRL	0.9756(0.9908)	0.9374(0.872)	
JDDA_CORAL	0.9314(0.9798)	0.9156(0.8671)	
JDDA_MMD	0.9368(0.985)	0.9255(0.8575)	
CADN	0.9696(0.9958)	0.8292(0.7223)	
DANN	0.9273(0.9953)	0.8699(0.6631)	
DAOCT(proposed)	0.9804(0.9914)	0.9553(0.9307)	

Result-ablation experiment

Table 3: Eectives of each key component in DAOCT, evaluation accuracy (%) on target dataset. 'FG' means feature gennerator proposed in this study, and multi-layer perceptron is set as default feature generator

Method	Source only	L_{wd}	L_{A^D}	\mathbf{FG}	Accuracy
MNIST→USPS	\checkmark				0.9301
		\checkmark			0.9656
			\checkmark		0.9371
		\checkmark	\checkmark		0.9667
		\checkmark	\checkmark	\checkmark	0.9804
$Cirrus \rightarrow Spectralis$	\checkmark			\checkmark	0.8669
		\checkmark		\checkmark	0.9374
			\checkmark	\checkmark	0.9359
		\checkmark	\checkmark		0.8758
		\checkmark	\checkmark	\checkmark	0.9553

Result-Tsne

MNIST -> USPS

Future work

• Combine this work with decoder to generate cross-domain images.

Segmentation, lesion detection ...

[1] Ucheli, et al. (2020). Biomedical optics express, 11(1), 346–363.

Thank you