Domain adaptation model for retinopathy
detection from cross-domain OCT images
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Motivation

* Classifier trained from one domain images perform badly on new domain images
* Images captured from different devices have different signal distribution

* Deep models’ performance declines when the test data are under a different distribution compared to the
training data.

* Labels of medical images are difficult to acquire.
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Overview

e Extracting the domain invariant and discriminative features to train the classifier.
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Network architecture

* An adversarial model was proposed to learn the domain invariant feature.
e A Wasserstein estimator and an domain discriminator were combined to train the model
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Result- classification across domain

Table 1: Evaluation results (accuracy %) of several domain adaptation models on target
datasets. (The evaluation results on the source dataset is reported in parentheses)

Method MNIST -> USPS Ciruss -> Spectralis
Source only 0.9612(0.9939) 0.8669(0.947)
WDGRL 0.9756(0.9908) 0.9374(0.872)
JDDA_CORAL 0.9314(0.9798) 0.9156(0.8671)
JDDA_MMD 0.9368(0.985) 0.9255(0.8575)
CADN 0.9696(0.9958) 0.8292(0.7223)
DANN 0.9273(0.9953) 0.8699(0.6631)
DAOCT (proposed) 0.9804(0.9914) 0.9553(0.9307)




Result-ablation experiment

Table 3: Eectives of each key component in DAOCT, evaluation accuracy (%) on target
dataset. 'FG' means feature gennerator proposed in this study, and multi-layer perceptron is
set as default feature generator

Method Source only L, L sp FG Accuracy
v 0.9301
v 0.9656
MNIST—USPS v 0.9371
v v 0.9667
v v v 0.9804
v v .8669
v v (0.9374
Cirrus—Spectralis v v 0.9359
v v .8758
v v v 0.9553




Result-Tsne

MNIST -> USPS
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Future work

 Combine this work with decoder to generate cross-domain images.
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Segmentation, lesion detection ...

[1] Ucheli, et al. (2020).Biomedical optics express, 11(1), 346—-363.
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