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Background

-

• Labelling training datasets is a rate-limiting step for clinical deep learning applications

• Laborious task requiring considerable domain knowledge and experience 
i.e.  neuroradiologist



Automatic labelling with NLP

-

• Promising alternative – derive labels from radiology reports using natural language processing



Automatic labelling with NLP

-

• Promising alternative – derive labels from radiology reports using natural language processing

MIDI consortium



Automatic labelling with NLP
• Previously demonstrated for head computed tomography reports (Zech et al. 2018)

• No dedicated MRI neuroradiology report classifier

• MRI higher soft tissue contrast, so more detailed descriptions – difficult NLP task

• Reports contain abbreviations, list of absent abnormalities, abnormalities considered insignificant



Example reports
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BioBERT
• Need sophisticated language model trained on relatively few labelled reports 

• Fine-tune BioBERT, transformer-based biomedical language model 

• Inherit low level language comprehension i.e. transfer learning

• See “The illustrated Transformer” by Jay Alammar for introduction to transformers 

From Lee et al., 2019



Model
• BioBERT converts text to contextualised word embeddings

• Downstream classification can be performed by aggregation of embeddings

• CLS, max, average, attention weighted
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Data and report labelling
• > 120, 000 radiology reports and corresponding MRI scans obtained

• 3000 randomly selected for labelling by team of neuroradiologists for model
training and validation

• 1000 reports labelled into 5 clinically relevant granular categories:
- Mass e.g. tumour
- Vascular abnormality e.g. aneurysm 
- Damage e.g. previous brain injury
- Acute stroke
- Fazekas small vessel disease score  

• 2000  reports labelled for presence or absence of any abnormality (on the basis of criteria
defined by team over the course of 6 months of practice experiments) 



Results
- Binary classification i.e. normal/abnormal

Frozen BioBERT Our model                       word2vec

t-SNE visualisation of test set report embeddings



Results
- Granular classification       

• NLP labelling on basis of reports comparable to expert neuroradiologist

• Do reports agree with images?  normal/abnormal  - yes, granular  - mostly (see Wood et al. 2020)  

• 120, 000 MRI images labelled in < 0.5 hours
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Interpretability
• Inspection of attention weights allows form of model interpretability       



Semi-supervised labelling
• Pathology-dependent clustering in predicted binary labels allows  

semi-supervised labelling of granular datasets (e.g. Alzheimer’s, high grade glioma etc.)

• “Lasso” too available at https://github.com/tomvars/sifter

https://github.com/tomvars/sifter


Conclusion
• Dedicated MRI neuroradiology report classifier for automatic image labelling

• Binary classification performance outperforms trained neurologist

• Granular classification performance comparable to experienced neuroradiologist

• 120,000 radiology reports and corresponding MRI scans labelled in < 0.5 hours

Acknowledgements

This work was supported by The Royal College of Radiologists, King’s College Hospital Research and Innovation, King’s 
Health Partners Challenge Fund and the Wellcome/Engineering and Physical Sciences Research Council Center for 
Medical Engineering (WT 203148/Z/16/Z). We also thank Joe Harper, Justin Sutton, Mark Allin and Sean Hannah at KCH 
for their informatics and IT support, Ann-Marie Murtagh at KHP for research process support, and KCL administrative 
support, particularly from Denise Barton and Patrick Wong. 


