Beyond Classification: Whole Slide Tissue Histopathology
Analysis By End-To-End Part Learning
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Computational Pathology

Tissue slide cut,
staining, and
examination

5x 20x

l Whole Slide Image (WSI)




Challenges of Computational Pathology

40,000
Slide label
, * Cancer classification
Lack of local annotation * Treatment response
Only slide-level labels e Survival




Two-stage approaches for WSI classification

X: image tiles

Y: Slide label

Z: latent variable N
le> e Tile score z> e Cancer classification
e Tile feature e Treatment response
e Survival
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Two-stage approaches for WSI classification

Weakly-supervised

X: image tiles 6, >

Z: latent variable

Y: Slide label

With local , . i
tati X: labeled tiles Z: t'!e >COres Cancer classification
annotation e Tile label
Multiple instance X: Z: tile scores
learning (MIL) Negative slides: all tiles e Tile “pseudo” label Cancer classification
Positive slides: tiles with scoreZ>t ¢ Assumption:Z=Y
Z tile features lassificat
Unsupervised X: all tiles e Reconstruction Canc.erlc assl |c§t|on
O training  Self-supervision survival regression




Slide tiling Classifier  Tile probability Ranked tiles Top tiles Slide
targets

Clinically relevant e, _ W o ¥
dataset g > ekl 1

Multiple instance
learning (MIL)

Campanella, G., Hanna, M.G., Geneslaw, L. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide
images. Nat Med 25, 1301-1309 (2019) d0i:10.1038/s41591-019-0508-1

Whole Slide Image

DeepConvSurv

DeepConvSurv
)

UnSUpervised e L DeepConvSurv
0, training .

Aggregation

DeepConvSurv

DeepConvSurv

Adaptive generating patches Aggregatlng for final prediction
using survival-related clusters
Zhu, Xinliang, et al. "Wsisa: Making survival prediction from whole slide histopathological images." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017.




Two-stage approaches for WSI classification

Unsupervised 0, training:

o>

Combining diverse information over whole slides
Decoupled training of 6, and 6,
Theoretically applicable to any learnable tasks, e.g. survival prediction

T

Z: latent variable

Tile score
Tile feature

Y: Slide label

9 e Cancer classification
* Treatment response
e Survival

Multiple instance learning (MIL):

* Selecting most predictive tiles

e Assumption:

* Only applicable to cancer classification
* 0, is usually voting




How do we combine diverse information of all tiles and learn slide label end-to-end?

Ideal end-to-end learning :

Represent the whole slides as K tile clusters in feature space so that
6, only needs to learn aggregation over K centroids rather than all tiles:

X1,

x1 2<>Zl 0

a
Y
xz 1 Z'k

X2.2
X2,3

‘Relaxation
Xk,1
Y + xk,3> Zi

Xk,8
Sampled tiles

mazimize P(Y|0,,0.,X)

v

maximize P(Y|0q,72), where Z ={z1,...,21}, 2z = 1/Ng de(xk,i)

N,

Relaxation: calculating centroids -> approximating each centroid by the nearest tile

v

maximize P(Y|0q,06,{x1,...,21}) + P(Z|0c,{x1, ...

, Tk })

Approximating each centroid by the nearest tile in feature space and minimizing the Euclidean

distance between tiles and their centroids.

The whole model consisting of K tile encoders 8,, which share parameters, and 1 aggregation

module 8, can be optimized from end-to-end w.r.t any learnable target Y.
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End-to-end Part Learning (EPL) For Whole Slide Image Analysis

Chensu Xie

Y: Slide label
cat I » Cancer Classification
Oq * Treatment Response
] e Survival

Push tiles to centroids
in feature space
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Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning. In Medical Imaging with Deep Learning.
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L =CE(y,

Cross Entropy Loss
w.r.t Slide Label
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Xie, C., Muhammad, H., Vanderbilt, C. M., Caso, R., Yarlagadda, D. V. K., Campanella, G., & Fuchs, T. J. (2020, January). Beyond»
Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning. In Medical Imaging with Deep Learning.



(Z,6.(X))

centroids

mazximize P(Z|0,, {J’pr Tfk})

Xie, C., Muhammad, H., Vanderbilt, C. M., Caso, R., Yarlagadda, D. V. K., Campanella, G., & Fuchs, T. J. (2020, January). Beyond;3
Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning. In Medical Imaging with Deep Learning.



.r.t Slide Label centroids
22... 24

concatenate

mazimize P(Y|0,,0c,{al,...,2}})  mazimize P(Z|0c,{xy, ..., x} })

Xie, C., Muhammad, H., Vanderbilt, C. M., Caso, R., Yarlagadda, D. V. K., Campanella, G., & Fuchs, T. J. (2020, January). Beyond;4
Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning. In Medical Imaging with Deep Learning.



Part reassignment

4 :Centroid
approximation tile

Iteration : Global centroids

-

Calculate new global centroids {zy, z,, ..., Z; }' by averaging the new
feature of each part of tiles assigned in the previous epoch t — 1:
zk = 1/N X 05 (xf 15



Benchmark against traditional task

Cancer Classification Lung Cancer Architectural Subtyping
Prostate BCC Lepidic  Papillary  Solid  Micropapillary
ML 0.086  0.986 - _
MIL-RNNM 0.991 0.988 : :

Method

EPL 0.986 0.986 0.654
EPL-NA 0.984 0.987 -
EPL-k1 0.734 0.930 0.585

e Traditional cancer classification: S = {0,1}

» Clinical-grade classification: only 4 and 6 false negative slides (undetected cancer cases) out of the 1500+ test
slides respectively

* Multi-label lung cancer architectural subtyping: S 2 <1,0,0,1>
e MiILis not applicable

1. Campanella, G., Hanna, M.G., Geneslaw, L. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 25, 13011—&309
(2019) doi:10.1038/s41591-019-0508-1
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Multi-label lung cancer subtypes prediction

1. Green ink.

2. Red blood cells in blood vessels near alveolar spaces.

3. Macrophages in alveolar spaces, often with emosiderin in the macrophages.
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7. Black ink.

8. Cancer enriched

9. Cancer enriched

Lt |

10. Blood vessel and alveolar wall with sparse cells in spaces.
1 . g 1
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12. Stroma.




Tissue type localization and region importance scoring




EPL: a general framework for the future of end-to-end WSI assessment

* A general weakly-supervised WSI prediction algorithm; theoretically applicable to

any learnable target Y.
e Ongoing projects in the lab (with promising results):
e EPL for survival regression
* EPL prediction of lung cancer patient response to immunotherapy

e Easy to be combined with tile-level proxy tasks.

* Simply adding concurrently trained loss
e E.g. tile labels, self-supervision targets etc.

e Various tile encoder 6,
* 0, as graph neural network (GNN) for WSI classification based on cell graph built from nuclei detection
results of VOCA!1!

1. Xie, C., Vanderbilt, C.M., Grabenstetter, A. &amp; Fuchs, T.J.. (2019). VOCA: Cell Nuclei Detection In Histopathology Images By Vector Oriented
Confidence Accumulation. Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning, in PMLR 102:527-539



Thanks to Fuchs’ lab!
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