Beyond Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning

Chensu Xie^{1,2} Hassan Muhammad^{1,2} Chad M. Vanderbilt² Raul Caso² Dig Vijay Kumar Yarlagadda² Gabriele Campanella^{1,2} Thomas J. Fuchs^{1,2}

XIC3001@MED.CORNELL.EDU HAM2024@MED.CORNELL.EDU VANDERBC@MSKCC.ORG CASOJRR@MSKCC.ORG YARLAGAD@MSKCC.ORG CAMPANEG@MSKCC.ORG FUCHST@MSKCC.ORG

- ¹ Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, USA
- ² Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA

Medical Imaging with Deep Learning Montréal, 6 - 9 July 2020

Computational Pathology

Tissue slide cut, staining, and examination

Challenges of Computational Pathology

Two-stage approaches for WSI classification

X: image tiles

Z: latent variable

- Tile score
- Tile feature

Y: Slide label

- Cancer classification
- Treatment response
- Survival

Two-stage approaches for WSI classification

Campanella, G., Hanna, M.G., Geneslaw, L. *et al.* Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. *Nat Med* **25**, 1301–1309 (2019) doi:10.1038/s41591-019-0508-1

Zhu, Xinliang, et al. "Wsisa: Making survival prediction from whole slide histopathological images." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2017.

6

Two-stage approaches for WSI classification

- Only applicable to cancer classification
- θ_a is usually voting

How do we combine diverse information of all tiles and learn slide label end-to-end?

Ideal end-to-end learning :

maximize
$$P(Y|\theta_a, \theta_e, X)$$

Represent the whole slides as K tile clusters in feature space so that θ_a only needs to learn aggregation over K centroids rather than all tiles:

• The whole model consisting of K tile encoders θ_e , which share parameters, and 1 aggregation module θ_a can be optimized from end-to-end w.r.t any learnable target Y.⁸

End-to-end Part Learning (EPL) For Whole Slide Image Analysis

Chensu Xie @ FuchsLab

[Xie et al., MIDL 2020]

Xie, C., Muhammad, H., Vanderbilt, C. M., Caso, R., Yarlagadda, D. V. K., Campanella, G., & Fuchs, T. J. (2020, January). Beyond₁₀ Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning. In *Medical Imaging with Deep Learning*.

Xie, C., Muhammad, H., Vanderbilt, C. M., Caso, R., Yarlagadda, D. V. K., Campanella, G., & Fuchs, T. J. (2020, January). Beyond₁₁ Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning. In *Medical Imaging with Deep Learning*.

Xie, C., Muhammad, H., Vanderbilt, C. M., Caso, R., Yarlagadda, D. V. K., Campanella, G., & Fuchs, T. J. (2020, January). Beyond₁₂ Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning. In *Medical Imaging with Deep Learning*.

Xie, C., Muhammad, H., Vanderbilt, C. M., Caso, R., Yarlagadda, D. V. K., Campanella, G., & Fuchs, T. J. (2020, January). Beyond₁₃ Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning. In *Medical Imaging with Deep Learning*.

Xie, C., Muhammad, H., Vanderbilt, C. M., Caso, R., Yarlagadda, D. V. K., Campanella, G., & Fuchs, T. J. (2020, January). Beyond₁₄ Classification: Whole Slide Tissue Histopathology Analysis By End-To-End Part Learning. In *Medical Imaging with Deep Learning*.

Part reassignment

Calculate new global centroids $\{z_1, z_2, ..., z_k\}^t$ by averaging the new feature of each part of tiles assigned in the previous epoch t - 1: $z_k^t = 1/N \sum_n \theta_e^t(x_{k,n}^{t-1})$

Benchmark against traditional task

Method -	Cancer Classification		Lung Cancer Architectural Subtyping			
	Prostate	BCC	Lepidic	Papillary	Solid	Micropapillary
MIL ^[1]	0.986	0.986	-	-	-	-
MIL-RNN ^[1]	0.991	0.988	-	-	-	-
EPL	0.986	0.986	0.654	0.533	0.781	0.627
EPL-NA	0.984	0.987	-	-	-	-
EPL-k1	0.734	0.930	0.585	0.518	0.648	0.530

- Traditional cancer classification: $S \rightarrow \{0,1\}$
 - Clinical-grade classification: only 4 and 6 false negative slides (undetected cancer cases) out of the 1500+ test slides respectively
- Multi-label lung cancer architectural subtyping: S \rightarrow <1,0,0,1>
 - MIL is not applicable

Cancer classification

Multi-label lung cancer subtypes prediction

11.18

1. Green ink.

- 2. Red blood cells in blood vessels near alveolar spaces.
- 3. Macrophages in alveolar spaces, often with emosiderin in the macrophages.
- 4. Normal alveolar wall.
- 5. Cancer enriched for micropapillary subtype.
- 6. Cancer enriched for acinar subtype.

7. Black ink.

- 8. Cancer enriched for lepidic subtype.
- 9. Cancer enriched for high grade morphology, solid like.

- 10. Blood vessel and alveolar wall with sparse cells in spaces.
- 11. Cancer enrichedfor papillary subtype.

12. Stroma.

Tissue type localization and region importance scoring

EPL: a general framework for the future of end-to-end WSI assessment

- A general weakly-supervised WSI prediction algorithm; theoretically applicable to any learnable target *Y*.
 - Ongoing projects in the lab (with promising results):
 - EPL for survival regression
 - EPL prediction of lung cancer patient <u>response to immunotherapy</u>
- Easy to be combined with tile-level proxy tasks.
 - Simply adding concurrently trained loss
 - E.g. tile labels, self-supervision targets etc.
- Various tile encoder θ_e
 - θ_e as graph neural network (GNN) for WSI classification based on cell graph built from nuclei detection
 results of VOCA^[1]

1. Xie, C., Vanderbilt, C.M., Grabenstetter, A. & amp; Fuchs, T.J.. (2019). VOCA: Cell Nuclei Detection In Histopathology Images By Vector Oriented Confidence Accumulation. Proceedings of The 2nd International Conference on Medical Imaging with Deep Learning, in PMLR 102:527-539

Thanks to Fuchs' lab!

