

An Auto-Encoder Strategy for Adaptive Image Segmentation

Evan M. Yu, Juan Eugenio Iglesias, Adrian V. Dalca, Mert R. Sabuncu

Challenge

- Annotations costs time, money and requires expertise
- Weeks to manually label a dataset
- Growing segmentation protocol or imaging technology
- Objective: Segmentation framework with one manual segmentations or labels

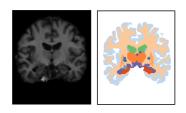


Figure 1: Structural brain MRI and its delineation

Setup

- ullet Consider a dataset of N MRI scans $\{ {m x}^{(i)} \}_{i=1}^N$
- ullet Let $oldsymbol{s}$ be latent segmentation
- By Bayes' rule:

$$\log p(\mathbf{x}^{(i)}) = \log \sum_{\mathbf{s}} p(\mathbf{x}^{(i)}|\mathbf{s})p(\mathbf{s}), \tag{1}$$

Evidence Lower Bound (ELBO):

$$\log p(\mathbf{x}^{(i)}) \ge - \mathsf{KL}(q(\mathbf{s}|\mathbf{x}^{(i)})||p(\mathbf{s})) + \mathbb{E}_{\mathbf{s} \sim q(\mathbf{s}|\mathbf{x}^{(i)})} \left[\log p(\mathbf{x}^{(i)}|\mathbf{s})\right]. \tag{2}$$

Segmentation Autoencoder (SAE)

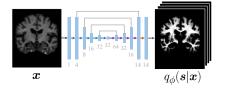
Variational Autoencoder (VAE)

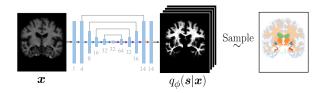
$$\mathcal{L} = \mathsf{KL}(q_{\phi}(\boldsymbol{s}|\boldsymbol{x}^{(i)})||p(\boldsymbol{s})) - \underset{\boldsymbol{s} \sim q_{\phi}(\boldsymbol{s}|\boldsymbol{x}^{(i)})}{\mathbb{E}} \left[\log p_{\theta}(\boldsymbol{x}^{(i)}|\boldsymbol{s}) \right]. \tag{3}$$

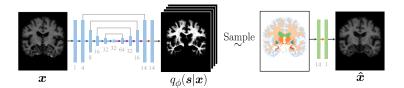
- ullet Typical VAE uses representation $oldsymbol{s}$ that is typically continuous
- ullet Our model maps $oldsymbol{s}$ to a semantic meaningful representation:

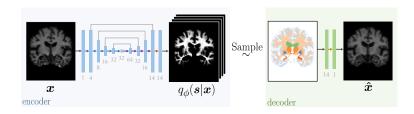
$$q_{\phi}(\boldsymbol{s}|\boldsymbol{x}^{(i)}) = \prod_{j=1}^{V} \mathsf{Cat}(s_{j}|\boldsymbol{x}^{(i)},\phi). \tag{4}$$

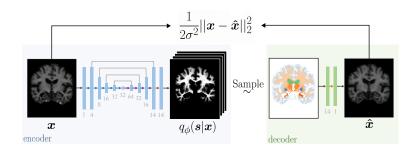
Likelihood:

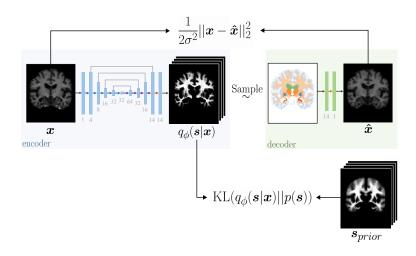

$$p_{\theta}(\mathbf{x}|\mathbf{s}) = \prod_{j=1}^{V} \mathcal{N}(\mathbf{x}; \hat{\mathbf{x}}_{j}(\mathbf{s}; \theta), \sigma^{2}).$$
 (5)


Spatial Prior


$$p_{spatial}(\mathbf{s}) = \prod_{j=1}^{V} p_j(s_j). \tag{6}$$




 \boldsymbol{x}



Evaluation

- Buckner dataset
- T1 MRI scans and 12 manual labels
- 1 probabilistic label atlas
- 30 training subjects and 8 testing subjects
- Repeated the experiment 5 times with different random subject assignments to the train/test partitioning.

Qualitative Results

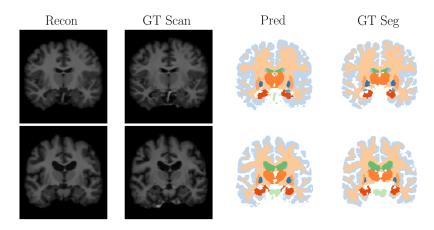


Figure 2: Representative segmentation results obtained with SAE (w/MRF) on two subjects.

Quantitative Results

Performance Measure

Model	Haussdorff (mm)	Dice Overlap (%)
Baseline	3.50 ± 0.06	71.45 ± 0.65
EM Baseline	$2.65{\pm}0.05$	79.70 ± 0.54
SAE (w/o MRF)	2.73 ± 0.04	79.94 ± 0.34
SAE (w MRF)	2.68 ± 0.05	80.54 ± 0.36
Supervised	$2.23{\pm}0.07$	84.60 ± 0.26

Table 1: Mean performance of all methods with their standard errors.

Thank You

More experiments + Implementation: https://github.com/evanmy/sae

