

Deep learning approach to describe and classify fungi microscopic images

Medical Imaging with Deep Learning 2020 Bartosz Zieliński, Agnieszka Sroka-Oleksiak, Dawid Rymarczyk, Adam Piekarczyk, Monika Brzychczy-Włoch

Motivation

- We use a machine learning approach to classify microscopic images of fungi species.
- It can make the last stage of biochemical identification redundant, shorten the identification process by 2-3 days, and reduce the cost of the diagnosis.

Problem description

- Images of resolution 3600×5760×3.
- Small dataset (180 images).
- 9 fungi species.
- 2 preparations per fungal strain.
- Gram staining.

(i) Saccharomyces cerevisae (SC)

Methodology

- We combine deep neural networks and bag-of-words approaches to identify fungi species causing common fungal infections.
- Each of the images is preprocessed with contrast stretching, and thresholding segmentation is used to differentiate between background and

Experiments and results

- Image patches of size 500x500 pixels are first represented with features obtained using a pre-trained convolutional part of selected neural networks (AlexNet, InceptionV3, ResNet18). Then, this representation is coded using the Fisher Vector.
- We compared the results for patch-based and scan-based classification of our method to fine-tuned neural networks (scan-based classification is obtaine by patch-based voting).
- We projected the features obtained from NNs using T-SNE and observe that the representation from AlexNe is the most descriptive.

Method	Patch-based	Scan-based
AlexNet	71.6 ± 2.4	77.3 ± 4.2
InceptionV3	69.9 ± 1.9	65.9 ± 4.9
ResNet18	75.9 ± 2.6	78.3 ± 5.4
Fisher vector with AlexNet	$\textbf{82.4} \pm \textbf{0.2}$	93.9 ± 3.9
Fisher vector with InceptionV3	41.3 ± 1.9	55.0 ± 5.6
Fisher vector with ResNet18	71.3 ± 1.5	88.3 ± 2.7

ardigen

Interpreting the results

 We analyze classifier certainty by investigating the distance of patches' representations from the classifier hyperplane.

Our method has the potential to be successfully used by microbiologists in their daily

practice.

