Deep learning approach to describe and classify fungi microscopic images Medical Imaging with Deep Learning 2020 Bartosz Zieliński, Agnieszka Sroka-Oleksiak, Dawid Rymarczyk, Adam Piekarczyk, Monika Brzychczy-Włoch ### **Motivation** - We use a machine learning approach to classify microscopic images of fungi species. - It can make the last stage of biochemical identification redundant, shorten the identification process by 2-3 days, and reduce the cost of the diagnosis. ## **Problem description** - Images of resolution 3600×5760×3. - Small dataset (180 images). - 9 fungi species. - 2 preparations per fungal strain. - Gram staining. #### (i) Saccharomyces cerevisae (SC) ## Methodology - We combine deep neural networks and bag-of-words approaches to identify fungi species causing common fungal infections. - Each of the images is preprocessed with contrast stretching, and thresholding segmentation is used to differentiate between background and ## **Experiments and results** - Image patches of size 500x500 pixels are first represented with features obtained using a pre-trained convolutional part of selected neural networks (AlexNet, InceptionV3, ResNet18). Then, this representation is coded using the Fisher Vector. - We compared the results for patch-based and scan-based classification of our method to fine-tuned neural networks (scan-based classification is obtaine by patch-based voting). - We projected the features obtained from NNs using T-SNE and observe that the representation from AlexNe is the most descriptive. | Method | Patch-based | Scan-based | |--------------------------------|----------------------------------|----------------| | AlexNet | 71.6 ± 2.4 | 77.3 ± 4.2 | | InceptionV3 | 69.9 ± 1.9 | 65.9 ± 4.9 | | ResNet18 | 75.9 ± 2.6 | 78.3 ± 5.4 | | Fisher vector with AlexNet | $\textbf{82.4} \pm \textbf{0.2}$ | 93.9 ± 3.9 | | Fisher vector with InceptionV3 | 41.3 ± 1.9 | 55.0 ± 5.6 | | Fisher vector with ResNet18 | 71.3 ± 1.5 | 88.3 ± 2.7 | ardigen ## **Interpreting the results** We analyze classifier certainty by investigating the distance of patches' representations from the classifier hyperplane. Our method has the potential to be successfully used by microbiologists in their daily practice.