S155 - Tackling the Problem of Large Deformations in Deep Learning Based Medical Image Registration Using Displacement Embeddings

Lasse Hansen, Mattias P. Heinrich

Show abstract - Show schedule - PDF - Reviews - Teaser

Though, deep learning based medical image registration is currently starting to show promising advances, often, it still fells behind conventional frameworks in terms of reg- istration accuracy. This is especially true for applications where large deformations exist, such as registration of interpatient abdominal MRI or inhale-to-exhale CT lung registra- tion. Most current works use U-Net-like architectures to predict dense displacement fields from the input images in different supervised and unsupervised settings. We believe that the U-Net architecture itself to some level limits the ability to predict large deformations (even when using multilevel strategies) and therefore propose a novel approach, where the input images are mapped into a displacement space and final registrations are reconstructed from this embedding. Experiments on inhale-to-exhale CT lung registration demonstrate the ability of our architecture to predict large deformations in a single forward path through our network (leading to errors below 2 mm).
Hide abstract

Poster Session #5 - 9:30 - 11:00 UTC-4 (Wednesday)
Hide schedule

Access paper channel


Short paper


Can't display slides, your browser doesn't support embedding PDFs.

Download slides