P048 - Brain Metastasis Segmentation Network Trained with Robustness to Annotations with Multiple False Negatives

Darvin Yi, Endre Grøvik, Michael Iv, Elizabeth Tong, Greg Zaharchuk, Daniel Rubin

Show abstract - Show schedule - Proceedings - PDF - Reviews - Teaser

Deep learning has proven to be an essential tool for medical image analysis. However, the need for accurately labeled input data, often requiring time- and labor-intensive annotation by experts, is a major limitation to the use of deep learning. One solution to this challenge is to allow for use of coarse or noisy labels, which could permit more efficient and scalable labeling of images. In this work, we develop a lopsided loss function based on entropy regularization that assumes the existence of a nontrivial false negative rate in the target annotations. Starting with a carefully annotated brain metastasis lesion dataset, we simulate data with false negatives by (1) randomly censoring the annotated lesions and (2) systematically censoring the smallest lesions. The latter better models true physician error because smaller lesions are harder to notice than the larger ones. Even with a simulated false negative rate as high as 50%, applying our loss function to randomly censored data preserves maximum sensitivity at 97% of the baseline with uncensored training data, compared to just 10% for a standard loss function. For the size-based censorship, performance is restored from 17% with the current standard to 88% with our lopsided bootstrap loss. Our work will enable more efficient scaling of the image labeling process, in parallel with other approaches on creating more efficient user interfaces and tools for annotation.
Hide abstract

Poster Session #6 - 13:30 - 15:00 UTC-4 (Wednesday)
Hide schedule

Access paper channel


Spotlight presentation


Can't display slides, your browser doesn't support embedding PDFs.

Download slides